
 CANIS
A U T O M O T I V E L A B S

Security Products for the Automotive Industry

CAN-HG
TECHNOLOGY
BRIEFING
DR. KEN TINDELL
2018-07-18

Document number 2211
Version 1
Issue date 2022-08-11

White Paper
Encryption on CAN Bus

Overview of CryptoCAN

Contents
1 INTRODUCTION 2

2 REQUIREMENTS FOR CAN MESSAGING 2

3 BASIC CRYPTOCAN MESSAGING 3

4 SOFTWARE AND HARDWARE 4

5 MESSAGE AUTHENTICATION 6

6 DEVELOPMENT SUPPORT 7

7 SUMMARY 8

Executive summary
CAN was designed in the mid 1980s before
devices on CAN were connected remotely and
before security was a major issue. Today the
situation is different and protecting messaging
on CAN is important. A way to do that is to use
cryptography so that only authorized senders
can create valid messages and only authorized
receivers can decode them. The CryptoCAN
scheme converts a standard CAN frame into a
protected message for transmission on CAN and
then back again at receivers, using dedicated
cryptographic hardware or pure software. The
scheme is designed to meet the specific
requirements for CAN communication, keeps
message payloads secret, prevents spoofing
attacks, and can run on resource-constrained
hardware.

canislabs.com 2 / 8

1 Introduction
CAN was created in the mid-1980s to provide a robust atomic broadcast system to
connect ECUs in passenger cars to replace individual signalling wires and has become a
proven technology in applications as diverse as yachts and spacecraft. But CAN was
never designed with security in mind – in the mid-1980s there was no notion of
embedded systems being connected to the internet. Today the world is very different
and there is a need to secure CAN communications because systems built with CAN are
cyber-physical systems: there are actuators that move things in the real world based on
the contents of CAN frames.

In mainstream computing a common way to secure communications is to use
cryptography:

• To keep secret the contents of messages

• To ensure messages have not been tampered with

Cryptography can be used for CAN communications too, but embedded systems built
with CAN are not like mainstream computers: there are specific requirements for CAN
communication.

2 Requirements for CAN messaging
Communication on CAN is not like communication in mainstream computing: CAN is
an embedded real-time control bus. The messages are small, containing sensor data and
actuator commands, and have strict latency and robustness requirements. From this
there are several requirements on any cryptographic system for CAN:

• CAN is a broadcast bus that embodies a publish-subscribe model: messages
containing sensor and status information are published periodically and the
sender generally doesn’t know about the receivers. The cryptographic scheme
must not require 1:1 communication, such as peer-to-peer key negotiation.

• CAN is a real-time control bus. The cryptographic scheme must result in
messages that have bounded latencies.

• CAN messages are very small by computing standards: just 8-byte payloads. The
cryptographic scheme must fit with this limited size.

• CAN systems are usually built from constrained embedded hardware. The
cryptographic scheme must work on microcontrollers with limited resources.

• CAN connected devices going through a watchdog reset must return to normal
operation quickly to resume control of a piece of physical hardware. The
cryptographic scheme must support fast-start communications.

The CryptoCAN scheme from Canis Labs is designed to meet all these requirements.
CryptoCAN is currently being evaluated by the United States Army Combat Capabilities
Development Command (DEVCOM) Ground Vehicle Systems Center (GVSC) in the

canislabs.com 3 / 8

cooperative research and development Agreement “Cyber Security for Military Ground
Vehicles Architectures”.

In the confidentiality integrity availability (CIA) model of communications security,
CryptoCAN can provide confidentiality (i.e., keep the messages secret) and integrity
(i.e., ensure messages came from a legitimate sender).

Before describing CryptoCAN, there is an important caveat to bear in mind:

No cryptographic scheme for CAN ensures availability: attacks such as bus
flooding and the Bus Off attack (where a targeted device is driven offline by
CAN errors) can prevent communications from taking place (just as a
physical attacker can prevent communications simply by cutting the bus).

3 Basic CryptoCAN messaging
CryptoCAN takes a standard CAN frame (the plaintext frame) and converts it into a
CryptoCAN message (the ciphertext message) that is sent on CAN then converted back
into the original plaintext CAN frame by each receiver (Figure 1).

Figure 1: How CryptoCAN encodes and decodes a plaintext CAN frame

CryptoCAN
encode

DLC
4 bits

Payload
Up to 64 bits

CAN ID Frame A payload
64 bits

Frame B payload
64 bits

CAN ID
(B Flag = 1)

DLC

DLC

CAN ID
11 or 29 bits

=8

=8

CryptoCAN
decode

DLC
4 bits

Payload
Up to 64 bits

CAN ID
11 or 29 bits

CryptoCAN message

DLC Payload MAC
128 bits

Reject

canislabs.com 4 / 8

A CryptoCAN message is 128 bits long and contains:

• The original frame payload (up to 64 bits)

• The original plaintext frame DLC (4 bits)

• A message authentication code (MAC) of 60 bits

A MAC is a bit like a CRC but much bigger and practically impossible to forge.
CryptoCAN uses the standard AES-CMAC algorithm to produce the MAC.

CryptoCAN uses a MAC-then-Encrypt (MtE) approach: the MAC is formed first then the
whole message, including the MAC, is encrypted. Encryption is done using the standard
AES-128 algorithm with the cipher feedback (CFB) mode. The result is a 128-bit
ciphertext block. This is split into two pieces and put into two 64-bit (8 byte) CAN frames:
Frame A and Frame B.

The CAN ID for the pair of frames is the plaintext CAN frame’s ID with one bit of the ID
used as the B Flag: this is 0 for Frame A and 1 for Frame B. The flag is there to ensure that
the receiver can reassemble the pair of frames back into the CryptoCAN message before
decoding. Under the CAN protocol arbitration rules, Frame A is a higher priority than
Frame B and is always sent on the bus ahead of Frame B. The application can choose the
B Flag. For example, in a J1939 system the lowest bit of the priority field (bit 26) might
be used, and in a CANOpen system, one of the address bits might be used.

4 Software and Hardware
The cryptographic algorithms used are the ones provided by a particular hardware
security module (HSM): the secure hardware extensions (SHE) HSM defined by the
automotive industry. The SHE HSM standard specifies the AES-128 algorithm (for
encrypting blocks of data) and the AES-CMAC algorithm for creating and verifying a
MAC. The standard also defines how keys are managed: they are stored in secure non-
volatile memory (in a dedicated area of memory that is not directly accessible by the
application software), there is a defined protocol for programming them, and keys have
defined permissions: they can be used for encryption/decryption or for MAC
creation/verification. CryptoCAN uses the SHE HSM functions for encryption and MAC
generation and verification (the keys are programmed into the HSM as part of
provisioning a device).

Not all embedded microcontrollers have an SHE HSM: some have AES-128 accelerators,
some have true random number generators (TRNG) and some have no cryptographic
hardware. To allow CAN devices using these microcontrollers to participate in secure
communications, CryptoCAN has a layered architecture (Figures 2, 3 and 4).

canislabs.com 5 / 8

Figure 2: CryptoCAN on a

microcontroller with
a SHE HSM

Figure 3: CryptoCAN on a
microcontroller with

AES accelerator hardware

Figure 4: CryptoCAN on a
microcontroller with

no cryptographic hardware

In the first situation (Figure 2), the CryptoCAN messaging software uses SHE HSM
hardware. The application accesses the HSM for key management functions (setting and
updating key values).

In the second situation (Figure 3), CryptoCAN is running on a microcontroller without
an HSM but with an AES-128 accelerator. In this case the CryptoCAN software includes
an SHE HSM emulator that uses the AES-128 accelerator hardware via a driver API and
to access target-specific non-volatile memory storage (typically on-chip flash or
EEPROM) to store keys.

In the third situation (Figure 4), CryptoCAN software is running on a microcontroller
without any cryptographic hardware. There is a software emulation of an SHE HSM
with a software implementation of AES-128.

A pure software implementation allows CryptoCAN to run on a wide range of CAN-
connected devices. The AES-128 encrypt operation is the most compute-intensive part
of CryptoCAN, and on the RP2040 microcontroller (used in the Canis Labs CANPico
board) it takes approximately 13 microseconds. The creation of a CryptoCAN frame
requires two AES-128 encrypt operations and the decode of Frame A and Frame B each
require one. The RP2040 microcontroller uses execute-in-place (XIP) external flash and
there can be very large cache fetch delays1 for cache misses. Cryptographic operations
must have constant execution time so the cryptographic functions in the RP2040
implementation of CryptoCAN are placed in RAM.

1 The RP2040 cache delays and the consequences for real-time performance are discussed in more detail
here: https://kentindell.github.io/2021/03/05/pico-priority-inversion/

CryptoCAN API

HSM API

CryptoCAN software

SHE HSM hardware driver

Application software

NVRAM driver API

CryptoCAN API

HSM API

CryptoCAN software

Software emulation
of SHE HSM

Application software

AES accelerator
hardware driver

AES API

NVRAM storage
driver

NVRAM driver API

CryptoCAN API

HSM API

CryptoCAN software

Software emulation
of SHE HSM

Application software

AES API

AES softwareNVRAM storage
driver

canislabs.com 6 / 8

5 Message Authentication
The CryptoCAN MAC is computed by using the AES-CMAC algorithm on 128 bits of
data that both the sender and receiver know:

• 29 bits containing CAN ID (the ID with the B Flag removed, but with 1 bit set for
standard/extended)

• 4 bits containing the plaintext CAN frame DLC

• 64 bits containing the plaintext CAN frame payload (padded if less than 8 bytes)

• A 31-bit freshness value: an application-specific value representing when the
frame was created (it could be a time or sequence number).

When the receiver decodes a CryptoCAN message, it computes the MAC from these
same known values. If the received MAC and the computing MAC do not match exactly
then the message is rejected.

The MAC verification will detect any tampering with a message. For example, if the
payload is attached to a different CAN frame ID, then the receiver will not compute the
same MAC as transmitted. Similarly, a message will be rejected if the payload is altered.

One common attack on encryption systems is a replay attack: old messages are copied
and then replayed later. An attacker may not know the contents of the message but can
guess from context (for example, a message may result in a door being unlocked and
therefore the message contains an “unlock door” command) and they can keep copies of
messages with known behaviours to replay them later. These messages are genuine
(because they were created by the legitimate sender) but are not valid - because they are
out-of-date. This is why CryptoCAN has a freshness value included in the MAC: after
this value changes, previous messages will no longer verify.

The freshness value is controlled at the application level: it can be a shared global time
kept in a real-time clock on each device, or it can be a sequence number incremented
each time a message is sent. It could also be partitioned so that the upper bits reflect an
operating cycle count, stored in non-volatile memory in each device.

One problem with obtaining the freshness value from a timer is that a message may be
created at time t but be received by the receiver at time t + L, where L is the latency of
Frame B. The freshness value at the receiver is therefore not the same as the one used to
create the message, and the MAC verification would normally fail. To address this issue,
CryptoCAN has an option to use spare bits in the DLC of Frame A and Frame B: when
a CAN frame is 8 bytes long, the lower 3 bits of the DLC are ignored by CAN and can be
used to carry information outside the payload. Frame A and Frame B together can are
used to carry the least significant 6 bits of the freshness value used to create the frames.
CryptoCAN at the receiver uses these 6 bits to work out the original freshness value,
determines if it is fresh, and verifies the MAC against it.

CryptoCAN creates a context for each message source: this stores data to encode and
decode CryptoCAN messages, including key numbers of the encryption and MAC keys,
the bit number of the B Flag, and the previous CryptoCAN message ciphertext (i.e., the
payloads of Frame A and Frame B). The previous ciphertext is used by the CFB mode of

canislabs.com 7 / 8

encryption (a mode that allows a receiver to start receiving messages very quickly after
starting or re-starting) but when a context is initialized, the previous ciphertext is
unknown and set to a random value. This results in an important CryptoCAN property:
the first CryptoCAN message after initialization will always be rejected. For a periodic message
this is usually not a problem. But it could be a problem for a sporadic message because
there may be no previous ciphertext. In this case, a simple solution is to always send the
the sporadic message twice.

6 Developing with CryptoCAN
CryptoCAN software is supplied as source code with a C API. The API is stand-alone
and does not require interaction with any other software: it uses abstract CAN frames (a
structure of ID, DLC, payload) that are converted by the application to and from target-
specific CAN frame representations.

Also provided is a MicroPython API to CryptoCAN in firmware for the Canis Labs
CANPico hardware. This runs on an RP2040 microcontroller, which has no
cryptographic hardware, so the software emulation of a SHE HSM is included, and
where keys stored in external flash memory (Figure 4). This is of course not resilient to
physical attacks (where the flash memory is de-soldered and the keys read out) but is
primarily intended to be used as an evaluation kit for CryptoCAN.

Figure 5 shows a simple interactive MicroPython session on two CANPico boards,
creating and sending encrypted CAN frames (left) and receiving and decoding them
(right). The HSM on each CANPico boards has been pre-provisioned with the encryption
and authentication keys. Note how the first CryptoCAN message is discarded.

Figure 5: Interactive MicroPython session on two CANPico boards.

canislabs.com 8 / 8

There is further development support built into CryptoCAN: an option to disapply the
encryption of CryptoCAN messages so that they are transmitted as plaintext (but still
with the MAC to protect against tampering). This helps a developer locate set-up
problems (for example, failing to set the same key values at the sender and receivers).
They can also continue to debug applications: Frame B contains the original payload and
existing CAN bus analyzer tools can simply process the unencrypted Frame B. The
processing time with or without the encryption applied is identical so that it can be
switched on later in deployment without invalidating previous testing.

7 Summary
CryptoCAN is an encryption scheme specifically designed for CAN. It fits the publish-
subcribe paradigm common to CAN systems, where a sender is not coupled to receivers.
It also supports the fast start of a receiver to participate in encrypted communication.

CryptoCAN replaces a plaintext CAN frame with a pair of ciphertext CAN frames with
the same real-time properties, and where the latency of Frame B is the latency of the
message, allowing existing scheduling analysis tools for CAN to continue to be used to
calculate worst-case frame latencies. CryptoCAN has also been carefully designed to run
efficiently on microcontrollers with no cryptographic hardware, and the extra
bandwidth used by CryptoCAN is one extra CAN frame per original frame. The issue of
replay attacks has been directly addressed, with support for automatically detecting and
dropping replayed messages.

The CryptoCAN MicroPython firmware is free to use for the Canis Labs CANPico
hardware.

