

CANIS
A U T O M O T I V E L A B S

Security Products for the Automotive Industry

CAN-HG
TECHNOLOGY
BRIEFING
DR. KEN TINDELL
2018-07-18

CAN Bus Security
Attacks on CAN bus and their mitigations

Dr. Ken Tindell, CTO Canis Automotive Labs
ken.tindell@canislabs.com

Document number 1901
Version 07
Issue date 2020-02-14

Copyright © 2019 Canis Automotive Labs Ltd. 2 / 39

1 INTRODUCTION ... 3
1.1 OVERVIEW .. 3
1.2 ACCESS TO THE CAN BUS ... 4
1.3 TYPES OF CAN ATTACK ... 5
1.4 ATTACK MITIGATION TECHNIQUES ... 6

2 ATTACKS ON CAN BUS .. 7
2.1 BUS FLOOD ATTACK .. 7
2.2 SIMPLE FRAME SPOOFING .. 7
2.3 ADAPTIVE SPOOFING ... 8
2.4 ERROR PASSIVE SPOOFING ATTACK .. 8
2.5 DOUBLE RECEIVE ATTACK ... 11
2.6 BUS-OFF ATTACK .. 12
2.7 FREEZE DOOM LOOP ATTACK .. 13

3 INTRUSION DETECTION SYSTEMS ... 14
3.1 INTRODUCTION .. 14
3.2 REAL-TIME TRAFFIC ANALYSIS .. 14
3.3 PAYLOAD ANALYSIS ... 15
3.4 HARDWARE SUPPORT .. 16

4 CAN SECURITY GATEWAYS .. 18
4.1 OVERVIEW .. 18
4.2 FIREWALLING FUNCTIONS ... 18
4.3 SECURE CONTROL OF GATEWAYS ... 20
4.4 CRITICAL MESSAGES VIA THE UNTRUSTED BUS .. 20
4.5 FRAME QUEUING ... 21
4.6 SOFTWARE CORRECTNESS .. 23

5 ENCRYPTION TECHNIQUES ... 24
5.1 OVERVIEW .. 24
5.2 ENCRYPTING CAN PAYLOADS .. 25
5.3 REPLAY ATTACKS .. 28
5.4 SIDE-CHANNEL ATTACKS .. 28
5.5 PERFORMANCE ... 29
5.6 KEY MANAGEMENT ISSUES ... 30

6 CAN SECURITY IN HARDWARE ... 32
6.1 INTRODUCTION .. 32
6.2 ANTI-SPOOFING CAN TRANSCEIVER ... 32
6.3 BUS GUARDIAN HARDWARE .. 33

7 SUMMARY .. 36
7.1 COMPARISON OF MITIGATION TECHNIQUES .. 36
7.2 CAN SECURITY RECOMMENDATIONS .. 37

Copyright © 2019 Canis Automotive Labs Ltd. 3 / 39

1 Introduction

1.1 Overview
CAN is a protocol more than 30 years old yet is still in widespread use in automo-
tive, aerospace, marine, space and many other industries. This is because of its high
reliability and low cost. It is a protocol that is almost perfectly designed for com-
municating sensor and actuator command data with short real-time latencies and
in an atomic fashion (i.e. all receivers see the data, or none do). Achieving these
properties is still a challenge for mainstream IT communications protocols such as
Ethernet. But CAN was not designed with security in mind. Systems today are
increasingly being connected to the Internet and at the same time malefactors are
becoming increasingly sophisticated.

Connected to CAN are the devices that if deliberately attacked could result in dam-
age or injury (for example, airbags are detonated at end-of-life using diagnostic
commands sent over CAN). Guarding the CAN bus is therefore vital.

There are several aspects to CAN security:

• How is the CAN bus accessed by a malefactor?

• What can they do with access?

• What are the strategies for mitigating these threats?

The rest of this section gives an overview of how CAN bus can be accessed and a
brief overview of the types of attack on CAN and the categories of mitigations

Section 2 describes attacks on CAN in detail. This covers spoofing and denial-of-
service attacks and gives examples of low-level attacks on the CAN protocol itself.

Mitigation techniques are then discussed in detail. Section 3 describes what intru-
sion detection systems (IDS) can achieve. Section 4 examines CAN security gate-
ways. Section 5 explains the issues surrounding the use of encryption on CAN.
Section 6 describes the latest innovations in hardware to protect the CAN protocol.

Finally, Section 7 summarises the issues of CAN security with a comparison of the
mitigation techniques and offers recommendations.

Copyright © 2019 Canis Automotive Labs Ltd. 4 / 39

1.2 Access to the CAN bus
There are four broad ways to gain access to CAN bus:

• Using the ODB-II connector. This is standard on nearly all passenger cars
and has the CAN H and CAN L twisted pair connectors available, as shown
below.

Figure 1: example of ODB-II connector in a vehicle wiring diagram

Plugged into this connector is typically a ‘dongle’ that contains a CAN
transceiver (to translate the CAN differential voltages into logic 0 and 1),
a CAN controller (to convert between a stream of logic bits and CAN
frames), and a communications interface to communicate to something
else (often Bluetooth to communicate with a nearby laptop or a phone,
sometimes a cellular modem).

There may be non-malign reasons for accessing the CAN bus via a don-
gle. For example, insurance companies are increasingly using these to
provide services to drivers. But the dongle connected to an external de-
vice creates further ways to the CAN bus: malware on a connected laptop
or phone or in servers connecting to the dongle, or even vulnerabilities in
the dongle firmware that can be exploited by connecting through a mo-
dem.

• Through the wiring harness. By knowing where the CAN bus wires are
routed it is relatively straightforward to splice into the CAN H and CAN L
wires. This might be done to retrofit some piece of equipment (there are
kits to turn lane-keeping assistance mechatronics into an pseudo self-driv-
ing system by adding cameras and software running Machine Learning al-
gorithms) or it might be a criminal attempting to override the anti-theft
systems by making a hole in the body panels to get directly at the wiring.

• Through the infotainment system. Most vehicle infotainment systems are
built from large software stacks over a desktop OS (e.g. Linux). The huge
complexity of the software has led to a huge number of vulnerabilities that
could compromise a device. These vary from local attacks (where a USB
stick with a targeted virus can hijack the infotainment system by being
plugged in) to nearby attacks (e.g. exploiting vulnerabilities in the WiFi,

Copyright © 2019 Canis Automotive Labs Ltd. 5 / 39

Bluetooth, RDS/TMC or DAB radio software stacks) to remote attacks over
the internet (e.g. carefully manipulated fonts in a web page designed to
exploit a vulnerability bug in an in-car browser).

• Through a hijacked electronic control unit (ECU). An individual ECU can
be hijacked by programming errors in its firmware, such as vulnerabilities
in the diagnostics software stack or in the software handling sensor data.
The stimuli to exploit these vulnerabilities could be local to the system
(such as RF messages containing corrupted tire pressure monitoring data)
or remote (such as remote diagnostics commands via the internet or a com-
promised workshop laptop PC). The most common method is a buffer
overrun attack that causes the CPU stack to be corrupted by carefully
crafted data that will cause the CPU to execute it as malicious code.

Exploitable programming errors in the firmware of devices are typically found by
the discovery of the use of open source libraries with known errors or by reverse
engineering the firmware of an ECU and looking for bugs. This process can be
partially automated with the Ghidra tool developed by the NSA that takes a binary
image to produce C source code. The source code can then be put through static
analysis tools such as PCLint to automatically search for bugs.

1.3 Types of CAN attack
There are three broad types of attack when access to the CAN bus has been ob-
tained:

• Authentication attacks. These are where a receiver sees CAN frames with
manipulated data as if from a legitimate source but designed to trigger an
action (e.g. open the door locks).

• Protocol attacks. This is where the signal on the CAN TX pin to the trans-
ceiver does not come from a CAN controller but software that sends care-
fully timed signals to attack the CAN protocol itself.

• Denial of service attacks. These can vary from simple flood attacks to load
the bus with otherwise legitimate traffic (causing lower priority frames to
be delayed or lost) to subverting the CAN protocol.

Authentication attacks are potentially the most severe: these can cause the move-
ment of actuators in the real world. But denial-of-service attacks also have real
world consequences too: blocking legitimate traffic can prevent vital functions
from being carried out, which is particularly severe if essential vehicle controls are
disabled.

Copyright © 2019 Canis Automotive Labs Ltd. 6 / 39

1.4 Attack mitigation techniques
There are several techniques for mitigating attacks.

• Intrusion detection. This is a technique where the traffic on the bus is in-
spected for abnormal behaviours. Without hardware support it cannot gen-
erally prevent an attack but even so has a use in intelligence gathering and
in post-incident forensics.

• Security gateway. This is a hardware approach using a device with two (or
more) CAN bus interfaces. The gateway copies only legitimate traffic be-
tween the trusted bus (typically a vehicle control network) and an un-
trusted bus that contains a device that is potentially compromised.

• Encryption. This is generally a software technique (sometimes with hard-
ware assistance) where an ECU protects its CAN bus traffic using crypto-
graphic methods. Only receivers with a key can decrypt a message and ver-
ify its legitimacy. There are several issues around practical use of encryp-
tion for protecting CAN.

• CAN security hardware. These approaches use a hardware device in-
cluded on a PCB that monitors the CAN signals to and from the CAN bus
and provides various levels of protection.

Each of these mitigation techniques are discussed later in this document.

Copyright © 2019 Canis Automotive Labs Ltd. 7 / 39

2 Attacks on CAN bus

2.1 Bus Flood Attack
A Bus Flood Attack is very simple denial-of-service attack: transmit CAN frames
as fast as possible to soak up bus bandwidth, cause legitimate frames to be delayed
and for parts of the system to fail when frames don’t turn up on time.

The success of the attack depends on what mitigations there might be in place. For
an open bus, transmitting a frame with a CAN ID of 0 will block all other traffic
because this is the highest priority frame. If there is a gateway that only allows
certain IDs to pass through then only the lower priority frames can be delayed: the
higher priority frames will continue to be transmitted undisturbed (this is one rea-
son why standard ODB-II diagnostic frames have IDs 0x7df and higher, giving
them very low priority).

2.2 Simple frame spoofing
Frame spoofing is a type of authentication attack: getting a receiver to accept a fake
frame as if it came from a legitimate sender.

• If directly connected (e.g. via the OBD-II port) this is done by simply queue-
ing the CAN frame through the drivers in the firmware of the connected
device.

• If connected via a hijacked ECU (e.g. infotainment) this can be done by us-
ing the drivers in the device or with new drivers installed as part of the
hijacking.

One problem with this simple spoofing approach is that the frames from the legit-
imate ECU are also received and the receivers may act on both the legitimate frame
and the spoofed one.

There is a bigger problem: the CAN protocol requires that two frames with the
same ID are not entered into arbitration at the same time. If this does happen then
after arbitration two controllers will be transmitting and when the bits transmitted
differ then one of the controllers will see a bit error (transmitting a recessive bit but
receiving a dominant bit) and signal an error frame, which causes all receivers to
resynchronise an arbitration to start again. If no higher priority frame has been
queued in the intervening time then these two frames will win arbitration again
and the process will repeat. This is denoted the Arbitration Doom Loop: each go
around the loop increases the Transmit Error Counter (TEC) in each of the two
controllers and they will eventually both go into the bus-off state (i.e. be logically
disconnected from the bus). This takes about 4ms on a 500kbit/sec CAN bus.

It can be a problem if the legitimate ECU is driven bus-off:

• The legitimate ECU may treat the failure as a wiring fault (since a short-
circuit on CAN would appear the same) and permanently move into a fail-
safe state where it refuses to communicate.

Copyright © 2019 Canis Automotive Labs Ltd. 8 / 39

• All the other frames from the ECU will cease, which will cause receivers to
detect a fault and they may also decide to move into a fail-safe state.

It may be that the intent of an attack is to deliberately push a vehicle into a fail-safe
state of minimum functionality (where the vehicle is driveable but with very re-
stricted operation). This would then be a form of denial-of-service attack.

2.3 Adaptive spoofing
The problems with simple spoofing are addressed by adaptive spoofing: the at-
tacking device listens to the bus to see when the legitimate frame is sent and then
queues the spoofed frame so that it does not clash. In many designs a receiver does
not act immediately on a received frame but instead stores it in a buffer associated
with the ID for a control loop to look at later. If the spoofed frame is sent immedi-
ately after the legitimate frame, then it will overwrite the buffer and the receiver
will most likely act on the contents of the spoofed frame. This is illustrated in the
figure below: there is only a small time-window when the true data is in the re-
ceiver’s buffer.

Figure 2: maximising the chances of a receiver seeing fake data

The attacker needs to respond to the frame received interrupt within a very tight
timing window in order to queue a spoofed frame in time to enter arbitration: the
frame receive interrupt will be raised at the second-to-last bit of the EOF field and
arbitration will start within four bit times – a deadline of just 8µs at 500kbit/sec.

2.4 Error Passive Spoofing Attack
The simple spoofing approaches outlined above can be detected by monitoring the
bus and looking at the timing of frames: spoofed frames will be sent more often
than expected and traffic analysis can detect anomalies (of course, retrospectively
detecting an attack may not be of much use when an actuator has already been
commanded). Detection can be made much more difficult by a type of spoofing
that subverts the CAN protocol itself: exploiting the behaviour of Error Passive
mode (for more details of this attack, see Eland et al. 2017 [1]).

When a CAN controller is Error Passive (either the Transmit Error Counter or the
Receive Error Counter is above 127) then the controller cannot signal errors
properly: a transmitter has to basically stop sending and wait for the bus to become
idle (it relies on other devices to see the stop in transmission and signal an error to
resynchronise).

The attack is in two stages:

1. Driving the CAN controller of the targeted ECU into the error passive
state. This is typically done by generating error frames when the targeted

ID 0x123 True
data CRC EOF

IFS ID 0x123 Fake
data CRC EOF

IFS

True data

CAN bus

Receiver’s
buffer Fake data Fake data

Copyright © 2019 Canis Automotive Labs Ltd. 9 / 39

ECU is sending any of its CAN frames (the TEC is increased by 8 each time
it detects an error).

2. Monitoring the bus and seeing the ID of the targeted frame after it has won
arbitration and then stepping in and overwriting the data and CRC fields
with a spoofed payload.

The legitimate sender will detect an error with its own frame when the spoofed
data field is sent (at some point it will send a recessive 1 bit but read back a dom-
inant 0 bit). However, while error passive it cannot signal an error frame: it must
send recessive bits and wait for arbitration to restart. This will leave the attacker
sending the rest of the spoofed data field (and a new CRC field that matches the
spoofed data). Receivers do not see this has happened: they merely see a single
received frame with a spoofed payload. This also means that traffic analysis will
not detect this attack.

This attack cannot be done through a CAN controller: it requires low-level access
to the bus to spoof the CAN protocol itself. This means that the CAN TX and CAN
RX pins on the transceiver must be under direct control of the attacker: an ODB-II
dongle with an external CAN controller cannot be used:

Figure 3: An external CAN controller with malware unable to

directly access CAN TX and RX pins

A microcontroller with an on-chip CAN controller typically multiplexes the func-
tions of its pins. The two pins used for the CAN controller signals to the trans-
ceiver can be controlled as general purpose I/O pins.

Figure 4: malware directly accessing CAN TX and RX pins by

controlling the on-chip pin multiplexer

Malware can monitor the RX pin, detect the targeted frames as they start being
transmitted and then drive the TX pin. In the first phase of the attack this is re-
peatedly driving the pin low for six CAN bit times to induce an error frame and

CAN
transceiver

Host
 microcontroller

CAN
controller

Twisted pair
CAN bus

CAN TX

CAN RX

CAN H

CAN LMalware SPI

CAN
transceiver

Host
 microcontroller

Twisted pair
CAN bus

CAN TX

CAN RX

CAN H

CAN L
CAN

controller

Malware

Copyright © 2019 Canis Automotive Labs Ltd. 10 / 39

drive the targeted ECU’s CAN controller Error Passive. In the second phase the
TX pin is driven with the spoofed frame data.

Figure 5: Hijacking a frame from a device in the error passive state

Emulating the CAN protocol in software is relatively straightforward (at
500kbit/sec each CAN bit is 2µs, plenty of time for a fast CPU): the software does
not have to implement the entire CAN protocol, merely enough to achieve the
spoofing.

2.5 Wire-cutting spoofing attack
If the attacker has physical access to the CAN bus and can cut wires to partition
the bus then they can spoof frames to one of the partitions by emulating the other
partition by gatewaying other frames and generating spoofed frames directly. This
type of attack is used today by unscrupulous owners to spoof odometer readings
so that although the ECU holding the odometer reading is outputting correct val-
ues, the dashboard display shows a reduced mileage and is inserted into a cut wir-
ing harness.

Figure 6: device for spoofing odometer CAN frames

ID 0x123

EOF
IFS

Fake
data

Frame on
CAN bus

Malware
driving TX

Fake
CRCRecessive

D Recessive

Receiver’s
view ID 0x123 Fake

data
Fake
CRC

EOF
IFS

Valid (but spoofed) CAN frame

Bit error detected

Copyright © 2019 Canis Automotive Labs Ltd. 11 / 39

2.6 Double Receive Attack
This attack is an exploitation of a feature of the CAN protocol that the ISO CAN
specification includes a warning for [2]. The protocol defines that a receiver accepts
a frame as finished at the second-to-last bit of the EOF field and that the transmitter
accepts it as finished at the last bit of the EOF field. There is a very small chance of
a bit error in the last bit of the EOF field: the transmitter sees a dominant bit, signals
an error and re-enters the frame into arbitration. But all receivers will have already
accepted the frame and passed it up to the application software. The transmitter
will send the frame again and the receivers will receive the same frame again. This
behaviour is a fundamental consequence of Buridan’s Principle [3]. In most CAN
systems the probability of failure is low: a low bit error rate multiplied by 111 (i.e.
the chances of the erroneous bit falling at exactly the last bit of an 8-byte frame).

Figure 7: Asserting a dominant bit in EOF0 to trigger a double receive

The double reception of a frame can be detected by including a sequence number
in frames. But most systems are not designed to do this (mostly because the prob-
ability of seeing the problem is low – error frames on CAN are anyway relatively
rare).

A Double Receive Attack can be mounted if the attacker can control the CAN TX
and CAN RX as general purpose I/O. A simple state machine in software imple-
ments part of the CAN protocol (there is no need for the software to implement
the full CAN protocol). This is illustrated below:

Assert dominant bit
on CAN TX

CRC Arbitration

Attacker’s
CAN TX

Frame on
CAN bus

CRC
delim ACK ACK

delim
EOF6-
EOF2 EOF1 EOF0

Frame accepted
at all receivers

Error
at transmitter

Error
frame

Copyright © 2019 Canis Automotive Labs Ltd. 12 / 39

Figure 8o: A simple state machine for emulating CAN to attack a frame

In most microcontrollers the CAN bitstream can be decoded by polling the CAN
RX pin and inspecting a free-running timer. The identifier is subject to bit stuffing
but instead of running a de-stuffing algorithm it is easier to compare against a pre-
computed pattern that is the ID with stuff bits. Once the frame has been identified
it is a simple case to wait for six recessive bits and then assert a dominant bit on
the CAN TX pin for one bit-time.

The simple approach outlined above is not particularly robust – an error occurring
during the transmission of the targeted frame will not be detected, for example –
but handling all the corner cases when mounting an attack is not usually an issue.

2.7 Bus-off Attack
The Bus-off Attack [4] is where a targeted ECU is driven offline: all the other ECUs
continue to operate but the targeted one is removed. This might be part of a wider
attack (such as a spoofing attack where the attacking device steps in and spoofs all
the frames from the targeted ECU). Or it might be a simple denial-of-service attack
on a fleet of vehicles: instead of trying to hijack the instrument cluster to display a
Check Engine light it is probably easier to simply take the engine management
ECU off the CAN bus and trigger the instrument cluster to see a failure and display
a warning.

The Bus-off Attack is a low-level protocol attack driving the CAN TX pin as de-
scribed earlier. But instead of targeting a specific frame, all frames from the same
ECU are targeted. This forces the Transmit Error Counter above 255 and the ECU’s
CAN controller automatically goes bus-off.

Some ECUs will try to recover automatically, requiring the attack to be repeated.
The network management and diagnostic strategy of the vehicle may eventually
stop the ECU recovery process and instead set a flag in its internal non-volatile

Wait

Identify

Trigger

Receive 11 recessive
bits in a row then a

dominant bit

Identifier matches
 target frame

Attack

Assert one
dominant bit

Identifier doesn’t
match target

Six recessive bits in a
row seen

Copyright © 2019 Canis Automotive Labs Ltd. 13 / 39

memory to stay offline. This will then typically trigger reduced driving function-
ality such as Limp Home mode. If the purpose of the attack is to cause trouble this
would count as success.

2.8 Freeze Doom Loop Attack
The Freeze Doom Loop Attack1 is a low-level attack that exploits a legacy feature
of the CAN protocol. It effectively freezes bus traffic for an arbitrary time and
could be used to delay a specific CAN frame to increase its latency or to generally
remove bandwidth from the bus.

The attack could be used to trigger a specific reaction to a given frame arriving late
or to delay the system responding to some condition. Or it could be used as a sim-
ple denial-of-service attack. The attack differs from others by being very difficult
to detect: the error counters are not increased, and the only symptom is that frames
arrive later than otherwise expected. If no timing analysis has been done to calcu-
late the worst-case latencies of frames then the attack will resemble an inherent
transient timing fault.

The CAN protocol defines a dominant bit in the first bit of the inter-frame space
(IFS) as a controller signalling an overload condition. All CAN controllers go into
the error recovery process but without incrementing the error counters. This is a
legacy feature of CAN designed to allow slow CAN controllers to be given more
time to handle a frame – no modern CAN controller generates this. The Freeze
Doom Loop Attack works by asserting a dominant bit on the CAN TX pin at the
first IFS bit then monitoring the error recovery and again asserting a dominant bit
in the IFS field at the end of the error recovery. This can be repeated an arbitrary
number of times, in effect freezing the bus for as long as desired.

Figure 9: Freeze Doom Loop Attack

The complexity of this attack is the same as for the CAN protocol attacks described
earlier: it involves a simple state machine with a timer to measure bit times, a op-
tional comparison with a targeted ID, and a countdown of recessive bits to the IFS
field.

1 The Freeze Doom Loop Attack has not been published elsewhere. Canis Automotive Labs has
not only produced a proof-of-concept but also uses the Freeze Doom Loop Attack as a mecha-
nism for silently blocking an attacking CAN controller and as a flow control mechanism for
CAN security gatewaying.

Assert dominant bit
on CAN TX

EOF IFS Overload
flag

Overload
delimiter IFS Overload

flag
Overload
delimiter IFS

Attacker’s
CAN TX

Frame on
CAN bus

Copyright © 2019 Canis Automotive Labs Ltd. 14 / 39

3 Intrusion detection systems

3.1 Introduction
The goal of an IDS is to detect when a likely attack is occurring and to take some
action. If the IDS is purely a software application with a standard CAN controller
then there is little direct action that can be taken to prevent or halt an attack: by the
time the attack is detected it is generally too late to prevent a CAN frame being
acted upon, and in any case an attack that includes a denial-of-service phase could
prevent the IDS from communicating with targeted ECUs. However, a software-
only IDS can collect data for post-incident analysis. This could be very important
for preventing a repeat attack on other systems.

An IDS augmented by CAN security hardware does have the possibility of miti-
gating attacks before they can cause harm. This is discussed in more detail below.

3.2 Real-time traffic analysis
A CAN bus used for control is not like a mainstream IT network: it is part of an
embedded system that has a very specific purpose where the communications pat-
terns are known and fixed at design time. In most cases the CAN frames are de-
rived from a database of signals into CAN frames transmitted periodically. Timing
analysis can be used to calculate the worst-case latencies of the frames so a com-
plete picture of the legitimate timing behaviour of the system can be known in
advance.

Figure 10: Excerpt of a CAN frame database with timing information

In systems that are not designed with a systematic process it is still possible to
observe a system and make a guess about the expected behaviour. However, this
is not ideal because the initially observed behaviour will likely not be at edges of
the actual performance envelope and there is a risk of false positives (i.e. when an

Copyright © 2019 Canis Automotive Labs Ltd. 15 / 39

alarm is triggered but there is nothing wrong). Sporadic frames (i.e. those trans-
mitted by an ECU only when an event occurs) are a particular problem because
they may never be seen the observation phase.

The monitoring process involves timestamping the arrival of every CAN frame,
identifying the frame from its CAN ID and continuously comparing it to the
frame’s timing envelope. There will typically be variance in the arrival times for a
periodic frame (called ‘arrival jitter’) due to other traffic on the bus winning arbi-
tration first. An idle period before the SOF bit means that the frame must have
been queued at the SOF, narrowing the timing window for when the frame was
generated.

The IDS must in general observe several transmissions of a frame before it can be
sure there is a timing violation. For example, a frame with a period of 100ms and
a worst-case latency of 90ms could be queued at time 0ms and time 100ms but be
received at time 90ms and time 101ms. IDS real-time monitoring can detect likely
simple spoofing attacks by seeing a frame too often (although it cannot detect
which is the genuine frame and which the spoof). A Flood Attack can similarly be
detected.

The Double Receive Attack will appear as if the sender is exceeding the defined
real-time behaviour by transmitting a frame twice in rapid succession and so may
be misidentified. This is a typical problem with any IDS: it can flag a suspicious
event and log information around that event, but it can rarely be certain that the
event is an attack and even less certain about the source of the attack. It cannot act
without risking the consequences of a false positive.

Some CAN controllers can provide information on errors and IDS software can
use this to detect an unexpectedly high rate of errors (either by seeing the Receive
Error Counter increase rapidly or by timestamping individual error events) and
flag a potential Bus-off Attack (see section 2.7) or an Error Passive Spoofing Attack
(see 2.4) because these rely on forcing an individual ECU into an error mode.

If the CAN controller used by IDS software has the capability to report overload
conditions then a Freeze Doom Loop Attack (see section 2.8) could be flagged. As
with the Double Receive attack, there is a possibility that this might occur rarely
from random errors, but repeated occurrences are very unlikely to be random.

3.3 Payload analysis
One useful feature of an IDS is to look inside the payload of a CAN frame to look
for suspicious behaviour. This is particularly useful for frames that are part of a
diagnostic session: there is rudimentary security included in the Unified Diagnos-
tic Services (UDS) protocol – in some cases a PIN number is used – but it is often
straightforward to brute force this. But an IDS could detect this brute forcing and
possibly even act before a system is compromised.

A centralised IDS can also use knowledge of the context of a system when exam-
ining payloads. For example, if the connection of a diagnostic test tool is inde-
pendently verified (perhaps by a signal related to a physical connector) then seeing
diagnostic frames without this signal would be a strong indicator of a diagnostic

Copyright © 2019 Canis Automotive Labs Ltd. 16 / 39

session being spoofed to attack an ECU (the diagnostic software stack in an ECU
is complex and a likely place for programming errors that could become vulnera-
bilities).

A simple IDS could also be run in each individual ECU: it is set to receive all frames
and if the ID of any of them matches the CAN ID of a frame normally transmitted
by the ECU then this can be flagged as a spoofing attack. There will be performance
issues with this: on a 500kbit/sec bus then a frame could potentially be received
every 94µs, which would amount to quite a large CPU load dedicated to monitor-
ing the bus. Dedicated hardware for this would be more efficient.

3.4 Hardware support
A software-only IDS cannot generally prevent attacks: by the time a spoofed frame
is detected it has been received by ECUs and potentially acted upon. But hardware
designed to support an IDS does allow mitigations.

A CAN controller with support for generating interrupts before the frame has been
received allows the IDS to decide if the frame is spoofed and to inject an error
frame to prevent receivers seeing it. Canis Automotive Labs has developed a de-
vice – MercuryÔ IDS – to do this. It contains a CAN state machine and can be con-
figured to raise interrupts for the following events:

• Start-of-Frame (SOF)

• End of arbitration

• CRC check passing

• Frame received OK

• Frame transmitted OK

• Error or overload frame

Mercury IDS can be instructed to generate six dominant bits to trigger an error
frame and so destroy a spoofed frame. It also reports on which errors were seen
and provides a timestamp for SOF. This allows the IDS software to determine what
exactly happened on the bus. For example, it can distinguish between a Flood At-
tack and the Double Receive Attack (the Flood Attack is the frame queued back-
to-back, the Double Receive Attack requires an error at precisely the end of the first
frame transmission).

IDS hardware can also be used to provide metadata to the IDS software. One ex-
ample of this is transceiver fingerprinting: if the voltages of CAN H and CAN L
are measured accurately at a high rate it is possible to determine the type of trans-
ceiver used and potentially even where on the cable the transceiver is located. A
statistical correlation is then used to determine the probability the frame came

Ô “Mercury” is a trademark of Canis Automotive Labs Ltd.

Copyright © 2019 Canis Automotive Labs Ltd. 17 / 39

from a specific device. The false positive rate is too high use this approach to sup-
press an attack, but it can be useful in post-incident forensics.

Another way to obtain metadata is for security hardware to inject it at the trans-
mitting side. Canis Automotive Labs has developed a bus guardian device that
injects a pre-programmed 7-bit source address into all outgoing CAN frames (see
section 6.3). Mercury IDS provides this address to the IDS software. Detecting
spoofing attacks from devices with the source address is then straightforward: the
software includes a table of CAN IDs and their source addresses and a spoofed
frame can be immediately identified and destroyed before any device received the
frame. The Canis Automotive Labs bus guardian device also accepts commands
over CAN from the IDS software to disconnect its host from the bus – this allows
the source of the spoofed message to be shut down (this is discussed in more detail
in section 6.3).

Copyright © 2019 Canis Automotive Labs Ltd. 18 / 39

4 CAN security gateways

4.1 Overview
A CAN security gateway copies legitimate traffic back and forth between an un-
trusted side and a trusted side. The trusted side is a CAN control bus (or more
typically, buses where control functions run across several buses with gate-
waying).

A security gateway can protect the trusted bus in the following ways:

• Protects from low-level protocol attacks. Because the access to the trusted
bus is only via CAN controller hardware in the gateway there is no oppor-
tunity to take direct control of the CAN TX pin and attack the CAN proto-
col on the trusted bus.

• Protects from denial-of-service attacks. Attempts to flood the bus will fail
because the gateway can refuse to forward traffic outside of a pre-defined
real-time envelope.

• Protects from spoofing attacks. Only pre-defined frames are permitted
through the gateway (although if there is more than one device on the un-
trusted side then one of these devices can spoof frames from another).

There may be several security gateways, depending on the cable harness. Typi-
cally, both the ODB-II and the infotainment units will each be behind gateways
(these are the source of most of the present-day attacks on CAN).

A security gateway may have many features, depending on the level of sophisti-
cation. Some of these are discussed below with reference to the Network Security
Processor (NSP) solution developed by Canis Automotive Labs.

4.2 Firewalling functions
The Canis NSP uses an Arm-based microcontroller running custom firmware (de-
veloped entirely in-house with no third-party software – not even C libraries – so
that there is complete control over the device). An example PCB with the device is
shown below:

Copyright © 2019 Canis Automotive Labs Ltd. 19 / 39

The NSP has two CAN interfaces: one on the ‘outside’ (the untrusted network) and
on the ‘inside’ (the trusted network). The PCB includes a CAN transceiver for each
bus, so the inputs to the hardware are the raw CAN H and CAN L lines.

The device contains flash memory and stores the CAN drop rules:

• CAN ID drop rules use mask/match values to decide to forward from one
bus to another. In a simple setup this would include OBD-II diagnostic
requests from the ODB-II side and responses from the control bus and
nothing else. An infotainment system would have more traffic (which
might include the status of ‘soft’ buttons on a touchscreen such as the tap
of ‘a deactivate airbag’ button).

• Real-time drop rules prevent flood attacks. A real-time drop rule assigns
an arrival pattern to a given frame (frame period and variability, frame
burst size).

• Payload drop rules in the Canis NSP allow signals within a CAN frame
payload to be defined, and the valid ranges expected for the signals.

• Frame rewrite rules allow signals not needed by an untrusted device to be
masked out so that sensitive information is not leaked to an untrusted de-
vice.

The Canis NSP allows mode changes so that the rules can be switched in and out
depending on what the system is doing. This is useful when the traffic patterns
vary a lot in different modes (such as diagnostic frames only during a diagnostic
mode).

Note that a security gateway cannot in general prevent the hijacking of ECUs by
corrupted versions of legitimate messages. For example, imagine a wireless inter-
face device, with WiFi and internet connectivity, used to forward diagnostic com-
mands (from a workshop laptop, a diagnostic server, etc.). A security gateway
would pass diagnostic commands through because those messages permitted.

Copyright © 2019 Canis Automotive Labs Ltd. 20 / 39

The payload of a spoofed diagnostic messages may then trip a buffer overflow
bug (for example) in a targeted ECU.

Figure 11: How a hacked device on the untrusted bus can send legitimate messages with

malware payload through a security gateway and hijack an ECU on the trusted bus

The basic functionality of a security gateway is relatively straightforward but
there are implementation issues that must be addressed. These are discussed be-
low.

4.3 Secure control of gateways
The gateway must be in general controlled from elsewhere to adapt to changes.
Examples include:

• To re-program the firmware with updates.

• To update drop rules to accommodate changes in the system design.

• To notify the gateway of mode changes.

• To extract diagnostic information from the gateway.

In many cases these control messages must come from the untrusted side (e.g.
when new firmware is distributed) and so there must be a secure communications
channel to the gateway from anywhere.

The Canis NSP addresses this by providing an encrypted end-to-end messaging
system for control commands, including a bootloader that can reprogram the firm-
ware of the gateway. There are further issues with how to do secure encrypted
messaging (key distribution, cryptographic protocols, etc.) – these are discussed
later.

4.4 Critical messages via the untrusted bus
The gateway may be required to transmit critical messages received from the un-
trusted bus across to the trusted bus. For example, frames containing soft button
presses on an infotainment touch screen, or frames containing new firmware for
over-the-air (OTA) download functions. A security gateway should have special
support for ensuring these frames can only reach the control bus if genuine.

The Canis Automotive Labs NSP has support for CAN frames on the untrusted
bus that are protected by end-to-end encryption. This is to support CAN frames
generated by a remote server and containing OTA firmware and configuration

Wireless interface unit

WiFi

Bluetooth

4G

CAN
controller

Linux (e.g.)

Malware

ECU

Security
gateway

Trusted
CAN bus

Untrusted
CAN bus

Copyright © 2019 Canis Automotive Labs Ltd. 21 / 39

data for ECUs. The NSP decrypts them and passes them to the trusted control bus
if they are authentic.

CAN frames that represent critical messages emerging from an untrusted source
can also be protected. The NSP allows some rules to be applied only with a hard-
ware interlock input in a specific state. Critical messages can then be designated as
forwarded only if that input is selected. For example, the NSP could be pro-
grammed to only forward airbag deactivation command frames from an infotain-
ment system if a human were simultaneously pressing a physical button. Simi-
larly, OTA firmware updates might only be forwarded if a key were turned in a
lock. This would prevent purely automated attacks on a vehicle.

4.5 Frame queuing
The CAN protocol defines an arbitration system that selects the highest priority
frame (i.e. lowest ID) frame on the bus to be transmitted. This approach should be
extended into the frames within each device connected to the bus: if there are sev-
eral frames ready to be sent on the bus then when arbitration starts, the highest
priority of those should be the one entered into bus-wide arbitration. This is im-
portant for ensuring the real-time performance of the CAN bus. There are several
reasons for this but the most important one is to avoid priority inversion.

Priority inversion is where a high priority frame can be held up by many lower
priority frames. It typically occurs when a CAN driver implements a FIFO buffer-
ing scheme as illustrated below:

The above is an example of a system of four nodes, with FIFO queueing of CAN
frames. At arbitration start, the front of each FIFO is entered into CAN arbitration.
The first frame transmitted has an ID of 290. The diagram below shows the time-
line of frame transmission. The highest priority frame in the system is delayed by
a long sequence of lower priority frames.

ID001

ID700

Node B Node C Node D

Node A

ID200

ID201

ID300

ID370

ID290ID605

Copyright © 2019 Canis Automotive Labs Ltd. 22 / 39

The delays from priority inversion can be severe but also highly intermittent. They
are also likely to cause a false positive in an NSP performing real-time traffic anal-
ysis leading. The security gateway must queue outgoing CAN frames in priority
order (most CAN controller hardware is designed to support).

There is a further problem with CAN frame queuing: frame ordering. If a second
instance of the same frame is received on one bus before it has been transmitted
on the other bus then this second frame must not be put into the outgoing CAN
controller’s priority queue until after the first instance has been transmitted. To do
otherwise would risk it being transmitted first: most CAN hardware will make an
arbitrary choice of which frame to send when two frames have the same ID (in any
case, the same logical frame may have different specific IDs: the SAE J1939 stand-
ard can use sub-fields in a 29-bit CAN identifier to indicate destination address).

Maintaining the order of frames is very important: some frames form part of a
large multi-frame message (for example, SAE J1939 supports messages up to 1785
bytes) and swapping the order of frames could corrupt the contents. This means
that there should be a FIFO input queue for incoming frames of a given ID. The
Canis Automotive Labs NSP permits per-frame FIFO queues of configurable size
to ensure the ordering of frames. The configuration also allows a logical frame
FIFO to be assigned multiple CAN IDs (to allow for sub-fields within the ID to
have arbitrary values and still be considered the same frame).

A general problem with CAN security gateways is buffer space: the transmitter on
one side sees the frame as transmitted before it is transmitted on the other side. For
a system with a single device on the untrusted side this is a problem: the sender
may be sending a multi-frame message and as soon as it sees its frame as transmit-
ted it may immediately queue the next. The untrusted bus will typically have little
traffic and so there is the possibility of flooding this bus and overflowing the input
buffers at the gateway. In mainstream computer networking this is addressed by
flow control: signalling the source to temporarily stop transmitting. CAN has no
flow control. One solution to this is to use the Freeze Doom Loop Attack as a flow
control mechanism for the untrusted bus, freezing the CAN bus until the gateway
buffers are no longer full.

Node A

Node B

Node C

Node D

ID300 ID201

ID290

ID200

ID370

ID605

ID700 ID001

Priority inversion delay

Copyright © 2019 Canis Automotive Labs Ltd. 23 / 39

4.6 Software correctness
The security gateway is a vital component in the securing a system so it must be
free of software vulnerabilities. Great care when developing the software should
be taken, using development techniques for high integrity software. These include:

• Formal requirements capture and trace.

• Ensuring high test coverage results.

• No use of untrusted third-party software.

• Use of a coding standard designed to minimize common security errors.

• Static source code analysis tools.

• Automated regression test suites.

Many of these techniques are shared with developing safety critical software.

Copyright © 2019 Canis Automotive Labs Ltd. 24 / 39

5 Encryption techniques

5.1 Overview
Encryption provides two protections for messages: secrecy and authentication.

Encrypting CAN frame payloads for secrecy makes it harder to determine the sig-
nalling patterns (a precondition for spoofing CAN frames) but does not prevent a
well-resource adversary from reverse-engineering the communications (they can
usually break into an ECU microcontroller, extract the firmware and examine it to
see how CAN frame payloads are handled). In any case, obfuscating CAN IDs is
not feasible.

Authenticating CAN frames is much more important: spoofing attacks rely on the
receiver not knowing if the message is authentic (i.e. from a legitimate source). The
cryptographic authentication process is generally as follows:

• The sender computes a message authentication code (MAC) from the de-
tails of the message, using a MAC algorithm and a secret key.

• The MAC is attached to the message and both are sent together.

• The receiver performs the same computation on the message with the same
secret key. If the result matches the received MAC then message must have
come from a sender who knows the secret key.

Encryption is limited in what it can achieve: it can only mitigate message content
and sequence attacks. While this does prevent re-wiring spoofing attacks, it cannot
address denial-of-service attacks. It does not detect or prevent the Flood Attack,
Freeze Doom Loop Attack and Bus-Off Attack.

There are several issues for implementing encryption on CAN:

• Bandwidth. The bus load is increased due to including a MAC with every
message.

• Performance. How long it takes to generate and authenticate messages and
how long it takes to start up and begin communications are critical in a
real-time control network.

• Key distribution. Both ends of communication must share the same key.
These keys need to be generated securely, put into devices, kept secret and
potentially replaced later with new ones.

• Resisting attacks. There are specific attacks on poorly-implement encryp-
tion systems.

Although encryption is conceptually simple there are many details to get right and
a single mistake can render the system useless to a skilled attacker (there are many
examples of this happening before, from WiFi encryption in routers to the firm-
ware authentication system in the XBox).

Copyright © 2019 Canis Automotive Labs Ltd. 25 / 39

The issues above are discussed below with reference to the CryptoCAN encryption
solution developed by Canis Automotive Labs.

5.2 Encrypting CAN payloads
AES is the most commonly used cipher and a lot of microcontrollers include hard-
ware accelerators to run the algorithm. AES is a block cipher that encrypts in
chunks of 16 bytes. The CryptoCAN scheme developed by Canis Automotive Labs
uses AES and the 16 bytes are handled as follows:

Figure 12: The basic CryptoCAN scheme

Application
payload

MAC

CAN
 ID

Sequence
number

Authentication
(CMAC)

Encryption
(AES-based)

Secret
MAC
key

16 bytes

4 bytes 4 bytes

Application
payload MAC

Secret
encryption

key

Encrypted payload

CAN
 ID 0 Frame 0

CAN
 ID 1 Frame 1

Copyright © 2019 Canis Automotive Labs Ltd. 26 / 39

The application CAN payload, its CAN ID, a sequence number and a secret key
are input to the authentication algorithm. This generates a 128-bit authentication
code, but only the top 64 bits are used for the MAC (64 bits are considered the
minimum to be secure – there are widely-known attacks on shorter authentication
codes).

The 64 bits of the CAN payload plus the 64-bit MAC are put together to form a
128-bit block that AES encrypts. The resulting 128-bit encrypted block is split into
two pieces, which are transmitted in two CAN frames that are then queued as a
pair.

The CAN ID is not the same for both halves because there would be a problem
with CAN drivers re-ordering the frames (as described earlier) so they differ by
one bit (typically the least-significant bit): the first frame has a 0 for this bit and the
second frame has a 1.

At the receiver these two frames are put together and the process reversed, as
shown in the diagram below:

Copyright © 2019 Canis Automotive Labs Ltd. 27 / 39

Figure 13: Authenticating a CryptoCAN message

The computed MAC and the received MAC are compared with each other and if
there is a match then the application payload is assumed to be authentic and
passed to the application.

The encryption steps can be skipped if there is no need for secrecy. In any case, the
description here is simplified: CryptoCAN uses a cipher feedback mode with a

Encryption
(AES-based)

Secret
MAC
key

Secret
encryption

key

CAN
 ID 0 Frame 0 CAN

 ID 1 Frame 1

Encrypted payload

Application
payload MAC

Application
payload

MAC

CAN
 ID

Sequence
number

Authentication
(CMAC)

MACMAC =

Copyright © 2019 Canis Automotive Labs Ltd. 28 / 39

cryptographically secure pseudo-random number generator (CSPRNG) to scram-
ble the frames so that if two frames have the same application payload then they
do not get the same encrypted values.

5.3 Replay attacks
One trivial attack on message authentication is to take the MAC and payload from
a valid message seen on the bus and re-use it in another message: the payload
would pass the authentication checks and the imposter message acted upon. To
prevent this the MAC must be computed on the whole message, not just its pay-
load (this is why CryptoCAN includes the CAN ID in the MAC).

A related attack is to copy an authentic message and then replay it later when the
attacker wishes to get receivers to act upon it. This can be a very effective attack:
the attacker cannot forge a message, but they can copy one that they know contains
the desired contents. They can then send this message whenever they want to
cause the same effect.

Replay attacks are defeated by including a ‘freshness’ value in the MAC calcula-
tion so that the calculated MAC on a stale message will not match the MAC in the
message. A simple way to obtain freshness is to use sequence numbers in a mes-
sage: receivers discard messages with old sequence numbers. CryptoCAN does
not do this because the bandwidth costs of including sequence number in a mes-
sage would be too high (it needs to be big enough to allow old messages to become
valid again – a 32-bit value on a message sent every 10ms would wrap after about
500 days of continuous operation). Instead it uses a timestamp and runs its own
clock to keep track of the time. The timestamp changes quickly enough that the
window for replaying messages is too short to be useful.

The distribution of the timestamp is a weakness that can be attacked: the sender
and receivers must agree on the timestamp so there needs to be a way reach con-
sensus on the timestamp. This can either be via a single master issuing a timestamp
or a distributed algorithm with no single master. In either case those messages
need to be authenticated without the timestamp messages being subject to a replay
attack: if the attacker can set the timestamp back in time then old messages from a
previous session can be replayed as if new. Authenticating the timestamp distri-
bution messages then requires an exchange of messages in a multi-step challenge-
response protocol run between the timestamp distributor and each receiver.

CryptoCAN includes an API for setting the sequence number for the MAC calcu-
lation so that any of the above strategies can be used.

5.4 Side-channel attacks
A side-channel attack is where information about the keys can be leaked by small
variations in an observable behaviour. One of these uses power consumption –
called differential power analysis (DPA) – where the switching of transistors in a
microcontroller causes tiny changes in the power supply voltage. Observing
enough operations allows a statistical model to be populated and to assemble a
copy of the key within a matter of a seconds. The risk of this attack is relatively

Copyright © 2019 Canis Automotive Labs Ltd. 29 / 39

low for ECUs because it requires access to the power supply pin on the MCU with
specialist equipment.

Another side-channel attack is a timing attack: small variations in the time taken
to encrypt or compute a MAC can leak the keys in much the same way as for DPA.
For CAN frames that emerge on to the CAN bus after being encrypted there will
be tiny variations in when the CAN frame is transmitted (the process of arbitration
adds noise, but this merely requires more observations before the model is fully
populated).

To defeat a timing side-channel attack there must be a fixed time taken for the basic
cryptographic operations to take place and a frame to be queued. Hardware accel-
erators for AES are implemented to do this but software is often not: common im-
plementations of AES use a lookup table that is stored in flash memory. But flash
memory uses caching, and the pattern of cache misses leaks information about
how the lookup table is being accessed. Any encryption implementation with var-
iations in timing must therefore not queue encrypted CAN frames after they have
been computed but instead from an independent timer countdown event.

5.5 Performance
The CryptoCAN system doubles the required bandwidth: each 8 bytes of payload
is authenticated with an 8-byte MAC. This is one of the fundamental drawbacks to
encryption and one of the motivations in the adoption of the CAN FD protocol.

Implementing encryption in software is difficult (see the above discussion on tim-
ing side-channel attacks) and the resulting software takes a lot of CPU time. The
CryptoCAN implementation of AES on the Cortex M3 is hand-optimised assembly
language and takes a fixed 1049 clock cycles – or 10.9µs at 96MHz – to encrypt a
16-byte block (the Cortex M0+ implementation takes 2064 cycles or 43µs at
48MHz). There may be several invocations of the AES operation per encrypted
message (at least one for the MAC and another for the payload encryption). This
adds up to a large amount of CPU time: it is a significant fraction of the time taken
to transmit a CAN frame.

Hardware acceleration is one way around this problem, but it will not always be
possible to use this everywhere. In any case there are sometimes architectural lim-
itations to using it for communications. For example, the S32K microcontroller
family from NXP has the AES accelerator inside the flash controller module (it
stores encryption keys securely in a private area of flash memory) and the encryp-
tion accelerator cannot be used during writes to flash memory. Flash memory
writes can take a long time, and this would block the sending of encrypted CAN
messages.

Copyright © 2019 Canis Automotive Labs Ltd. 30 / 39

5.6 Key management issues
Distribution of keys is a major issue with any embedded encryption system. At
manufacture each ECU needs to get a set of keys that are unique for a systems: if
keys are re-used between vehicles then reverse-engineering one vehicle means the
encryption is broken on all vehicles.

The keys can be programmed securely in the factory, but they also need to be pro-
grammed in the field: a new replacement ECU part must get the keys for the spe-
cific system. This process of getting new keys must itself be authenticated (other-
wise an attacker can just change the keys to known values).

CryptoCAN defines a protocol for a device communicating with a trusted tool.
This tool can set the keys for an ECU and has extensions for other functions (it is
used in the Canis Automotive Labs NSP for programming the gateway rules and
for updating the firmware of the NSP as well as setting keys). A challenge-response
protocol is used so that the tool and the target authenticate each other before keys
can be set. The tool protocol follows the model of the HIS Secure Hardware Exten-
sion (SHE): there is a master key set unique to the ECU that is just used for en-
crypting and authenticating the communications with the tool.

The CryptoCAN communication between the tool and the ECU is secured end-to-
end: the tool will typically be an application running on a server in a secure data
centre at the OEM, with access to a secure database storing the master key for the
specific ECU (the CryptoCAN protocol can assign a unique serial number to an
ECU). CryptoCAN also includes a three-phase transaction commit for writing keys
so that they are written atomically: if there is a power failure or other interruption
while the master key is set then a key will either be the old value or the new value
(otherwise a corrupted partially-written key would result in the device being un-
reachable – bricked, in other words).

The HIS SHE not only defines the protocol for storing keys but also specifies that
the key storage is one-way: the host MCU cannot read the keys out. This is to pro-
tect against ECU hijacking: if the ECU is compromised by malware then at least
that malware cannot extract the keys and pass them to another device. However,
sharing authentication keys is a vulnerability of any symmetric encryption scheme.

Any device with the shared key can forge messages as if from any other device
using that key. A hijacked ECU can create authenticated spoof messages.

For point-to-point communication, sharing keys at either end is not a problem. But
for a group of ECUs on a CAN bus it undermines the entire encryption-based au-
thentication. For example, if a single key is shared across all ECUs in a vehicle then
then hijacking one of ECUs allows the hijacker to create a valid MAC and spoof an
encrypted CAN message from any device to the rest of the group.

The shared secret problem could be mitigated by adopting asymmetric encryption
(all the encryption discussed up until now has been symmetric: both sides have
the same key). An asymmetric system has a key is split into two halves, a private

Copyright © 2019 Canis Automotive Labs Ltd. 31 / 39

half and a public half. The private half is held only in a single device, and the public
half is put into every other device. The sender computes a digital signature of the
message using the private key. The signature can be verified using the public key
alone: it does not require the sharing of secrets between devices. Hijacking an ECU
will not allow it to spoof message signatures because the private key is held only
at the legitimate sender.

Unfortunately, the asymmetric algorithms (such as ECDSA) are very slow: instead
of 1049 clock cycles on a Cortex M3 for an AES encryption operation, an ECDSA
signature verification takes 12.2 million clock cycles (or 127ms at 96Mhz). In main-
stream computing, asymmetric algorithms are used once to exchange temporary
session keys for symmetric algorithms that then communicate more quickly. But
this approach does not help with embedded CAN security:

• A long delay before starting communications on CAN is unacceptable. If
an ECU is reset for some reason (e.g. a watchdog timer is triggered) it must
pick up and continue as quickly as possible. When controlling a moving
mechanical device like an engine there is no time to request a re-run of the
key distribution phase and wait for all the other ECUs to settle on a new
key.

• A session key shared across a group still allows a hijacked ECU to spoof
messages from other ECUs in the group.

Until high-performance hardware for a standard digital signature implementation
is ubiquitous this approach is infeasible.

Copyright © 2019 Canis Automotive Labs Ltd. 32 / 39

6 CAN security in hardware

6.1 Introduction
The TX input into a CAN transceiver is the source of all the attacks on CAN bus.
The ultimate approach to protecting CAN bus is to protect this. As discussed ear-
lier, a simple way to achieve this is to use standalone CAN controller. But this will
not protect against spoofing and flood attacks. Specific CAN security hardware
can be used for more protection.

6.2 Anti-spoofing CAN transceiver
Spoofing is sending a CAN frame with an ID that another ECU normally transmits.
A simple way to implement anti-spoofing is to use a secure CAN transceiver [1].
The concept is simple:

• Program into the CAN transceiver a list of the CAN IDs that are legal to
send from the host.

• Any frame being received from the bus that matches an ID on the list is, by
definition, a spoofed frame. A check for this takes place soon after arbitra-
tion finishes, and a match is deemed an error: the CAN state machine in
the transceiver generates an error and all CAN controllers handle it in the
normal way.

• Any frame being sent from the host that has an ID not on the list is also
deemed an error (i.e. the host is originating a spoofed frame).

The approach is very simple and provides effective anti-spoofing. But there are
several issues:

• Secure and robust list re-programming. The list will be programmed in
the factory but there must also be an opportunity to re-program the list in
the field: an OTA firmware update might add new CAN frames to the ap-
plication in the ECU and the IDs will have to be added to the list (and,
potentially, others removed). The programming mechanism must be se-
cure, too (if software in the host can re-write the list then it can just disable
the mechanism). The lists everywhere must be programmed atomically
with the ECU firmware: if any failure occurs then the whole system must
be in a workable state while changes are rolled back.

• Arbitration Doom Loop. A spoofed frame will be destroyed by the CAN
error handling mechanism, all controllers will resynchronise, and a new
arbitration process will start. The CAN controller sending the spoofed
frame (either in host MCU or in a different ECU) will likely immediately
re-enter the spoof into arbitration and the Arbitration Doom Loop (de-
scribed earlier) will be entered.

The anti-spoofing transceiver does not prevent denial-of-service attacks. The Ar-
bitration Doom Loop is a form of denial-of-service attack (typically transmitting a
burst of 32 frames before the CAN controller goes bus-off).

Copyright © 2019 Canis Automotive Labs Ltd. 33 / 39

It is possible to put into hardware a simple ‘bucket’ rate limiting algorithm to de-
tect and block a crude Flood Attack, but this does not prevent disruption of the
timing behaviour of legitimate CAN frames, nor other low-level attacks on the
CAN protocol via the CAN TX pin. The protection of real-time traffic behaviour
must be matched with the known behaviour of the bus (as discussed earlier with
reference to intrusion detection systems). This is in general too complex to be put
into hardware alone.

Th above illustrates a general point with security: security mechanisms should be
separate from security policies. The mechanisms (e.g. destroying a spoofed CAN
frame) are simple and suitable for hardware, but the policies (e.g. whether a CAN
frame is legal in the current context) is usually specific to an application and must
therefore be decided by software that forms part of the application.

6.3 Bus guardian hardware
Canis Automotive Labs has developed hardware to provide anti-spoofing and
protect against denial-of-service attacks: Mercury Bus Guardian. It is placed be-
tween the CAN TX pin from the host MCU and the transceiver:

Figure 14: Mercury Bus Guardian device

Mercury Bus Guardian does the following:

• It passes through the CAN TX signal from the host but adds a header in to
the CAN frame. The header contains a 7-bit source address and is encoded
with fast bits. These are described below.

• It monitors the CAN TX signal from the host MCU to check if it is a well-
formed and legitimate CAN frame. It will suspend the CAN TX signal
passthrough if not.

• It accepts commands over CAN from a trusted security supervisor to sus-
pend and resume the CAN TX signal passthrough.

• It examines other CAN frames on the bus for fast bit headers and if any is
seen with matching source address it treats this as a spoofing error and
triggers the normal CAN error handling mechanism.

There is no list of CAN IDs stored in a Mercury Bus Guardian – the only configu-
ration information is the source address and the CAN bus bit rate settings. There
is no need for any reconfiguration.

CAN
transceiver

Host
 microcontroller

Twisted pair
CAN bus

CAN TX

CAN RX

CAN H

CAN L
CAN

controller

Malware

Mercury™

TX

RX

Copyright © 2019 Canis Automotive Labs Ltd. 34 / 39

Fast bits are extra bits injected into the spare time inside a CAN bit. These are care-
fully placed to take advantage of the CAN protocol rules for when edges are not
used for resynchronisation. The placement means that the fast bits are not seen by
regular CAN controllers: fast bits are in effect out-of-band signals. This is illus-
trated below:

Figure 15: Fast bits injected into a CAN frame

The fast bits in the diagram above are located outside the sample point window
(i.e. where no CAN controllers will sample the CAN bus to obtain a value for the
CAN bit). They start after the sample point where the sample is a dominant bit and
finish before the sample point window that will read a recessive bit. The diagram
shows a standard ID remote frame, where RTR=1 and IDE=0.2

Fast bits are normally transmitted at 10Mbit/sec (Canis Automotive Labs has de-
signed a device to use these fast bits through a large ‘carrier’ CAN frame to hold
96 bytes of application payload while remaining backwardly compatible with
CAN 2.0). The header is located in the IDE and r0 bits for standard 11-bit ID frame
and in the r1 and r0 bits for an extended 29-bit ID frame.

A logic analyser trace of a CAN frame with a fast bits header is shown below:

Figure 16: CAN TX from an MCU microcontroller (top line) and

CAN TX into the transceiver (bottom line) with the header

The CAN frame has a standard 11-bit ID of 0x123 and a single byte payload of
0xde. What look like glitches are fast bits encoding the header.

2 In this example the DLC field is 8 (remote frames can have a non-zero DLC; this is a corner
case in the ISO 11898 CAN specification).

Nominal CAN sample points

RTR = 1

Sample point window
(variation in sample

point across all ECUs)

IDE = 0 r0 = 0 DLC3 = 1

Fast bits

Copyright © 2019 Canis Automotive Labs Ltd. 35 / 39

A hardware-assisted intrusion detection system (discussed earlier) with a Mercury

IDS controller from Canis Automotive Labs obtains the header and makes it avail-
able to the ISR run after end of arbitration. The IDS software can decide if the frame
is legal based on a security policy. Policy decisions might include the following:

• The CAN ID indicates it should come from one ECU but the header indi-
cates it is coming from another ECU. It must be a spoof and should be de-
stroyed. The IDS should send a command to suspend CAN TX passthrough
at the hijacked ECU.

• Diagnostic tester frames should come from an external device without the
hardware to add a header. If a header is present then the frames are prob-
ably coming from a hijacked ECU.

• A header is not present, but the CAN ID indicates the frame should come
from an ECU with a Mercury Bus Guardian to add the header. The frame
is probably being spoofed by a device directly wired to the bus. It should
be destroyed, and the specifics of the attack noted for forensic analysis.

The policy is implemented in software and can be as sophisticated as required.
Firmware updates allow the policy to be changed to adapt to new circumstances.

The ability to command a Mercury Bus Guardian to suspend CAN TX passthrough
means that denial-of-service attacks can be halted. The command is contained in a
CAN frame with CAN ID 0 – the highest priority CAN frame – which will always
win arbitration and override a flood attack. This also mitigates the effect of the
Arbitration Doom Loop: the loop is terminated after one frame.

The IDS can also protect the bus against an ECU going outside permitted real-time
behaviour: the long-standing Babbling Idiot Problem of defective software, and
malware transmitting frames too quickly. Mercury IDS provides timestamps to the
IDS software and an arbitrarily sophisticated timing model can be used to check
traffic is legal.

Mercury Bus Guardian prevents an attack on the command CAN frame from the
IDS: CAN ID 0 is reserved for the IDS and CAN TX passthrough is automatically
suspended if the host tries to send a CAN frame with this reserved ID.

Mercury Bus Guardian protects against low-level protocol attacks. For example, it
monitors the CAN TX pin for spurious errors (i.e. the host MCU signals an error
but the CAN state machine in Mercury Bus Guardian has not seen an error) and
will automatically suspend for a short time the CAN TX passthrough – long
enough for the IDS to transmit a CAN frame with a command to permanently sus-
pend it, blocking a Bus-off Attack. Other low-level protocol attacks are also de-
tected and automatically stopped.

Copyright © 2019 Canis Automotive Labs Ltd. 36 / 39

7 Summary

7.1 Comparison of mitigation techniques
The table below summarises how different types of attack can be mitigated by dif-
ferent techniques. The group “Untrusted source” is for attacks originating from
sources that should not be trusted (e.g. the OBD-II connector or the infotainment
device). The group “Hijacked trusted ECU” is for attacks originating from ECUs
on the trusted bus that have been hijacked by at attacker exploiting a hole in the
perimeter defences. The group “Direct wiring” is for attacks originating from an
external device directly wired on to the CAN bus.

Attack access Untrusted source Hijacked trusted ECU Direct wiring

Attack type

Bus-off

Flood

Adaptive spoof

Error Passive spoof

D
ouble R

eceive

Freeze D
oom

 Loop

Bus-off

Flood

Adaptive spoof

Error Passive spoof

D
ouble R

eceive

Freeze D
oom

 Loop

Bus-off

Flood

Adaptive spoof

W
ire - cutting spoof

Error Passive spoof

D
ouble R

eceive

Freeze D
oom

 Loop

Software IDS ○ ○5 ○ ○ ○ ○5 ○ ○ ○ ○5 ○ ○
Security gateway ● ●1 ● ● ●1 ●
Encryption ◑2 ◑2 ● ◑2 ◑2 ● ● ● ● ●
Whitelisting transceiver ◑3 ● ● ◑3 ● ● ◑3 ● ●
Bus guardian with hardware IDS ● ● ● ● ◑4 ● ● ● ● ● ◑4 ● ● ● ● ● ◑4 ●

○ Can detect attack
● Can prevent attack
◑ Partial prevention
1 Only for if real-time drop rules configured
2 Does not apply for frames where hijacked ECU has the authentication key
3 Protection not compatible with timing analysis
4 Prevented except for first incident
5 Cannot distinguish between double-receive and a real-time violation

It is clear from the above that the most effective way to protect a CAN bus from
attacks is to adopt a hardware security device with a hardware-assisted IDS. The
specific advantages of the hardware solution are:

• Provides protection for denial-of service attacks from hijacked ECUs (nei-
ther security gateway nor encryption can do this).

• More efficient than encryption for anti-spoofing: the number of logic gates
required for the Mercury Bus Guardian is considerably smaller than those
for a hardware AES accelerator or hardware security module (HSM).

• Minimal configuration: a source address (that can be set once in the factory)
is the only necessary configuration of a device. There is no need to distrib-
ute and re-distribute keys.

• No software is required on any ECU (except in the IDS). This means the
hardware can be easily added to the PCB design of an ECU.

• Uniquely protects against low-level CAN protocol attacks such as the Bus-
off Attack.

• Security policy is separated from security mechanisms.

Copyright © 2019 Canis Automotive Labs Ltd. 37 / 39

To protect against partitioning and re-wiring of the CAN bus, extra measures are
required. For example, encryption could be used (in particular, the authentication
of messages) to protect against odometer spoofing hardware that isolates a dash-
board ECU behind a spoofing gateway device (as described earlier).

CAN bus security is an important issue that should be addressed specifically. But
it should always be considered as part of a wider security strategy, with policies
and mechanism in areas ranging from an OEM’s infrastructure to secure firmware
updates booting in a microcontroller.

Often it is not possible to immediately adopt the ideal security solution. But in
these cases, it is better to introduce something to mitigate attacks than do nothing.

7.2 CAN security recommendations
The following is a list of recommendations for improving CAN security.

1. Prevent double receive errors. The software should include a sequence num-
ber in the CAN frame so that an automatic retransmission by the hardware can
be detected and spurious frames discarded. A single bit that is toggled by the
CAN drivers is sufficient.

2. Perform timing analysis. Key to detecting and preventing bus flood attacks is
knowing the worst-case real-time behaviour of legitimate bus traffic.

3. Do not allow ODB-II or infotainment direct access to the control CAN bus
in a vehicle. These are the two biggest threats to CAN bus security. They
should be behind a security gateway.

4. Use hardware interlocks for critical operations. Do not allow OTA downloads
or disable airbag commands in a vehicle to be activated without a hardware
interlock that a physically present human must activate.

5. Use hardware to guard the CAN TX pin. The low-level protocol attacks de-
pend on direct access to the CAN TX pin. Use an external CAN controller con-
nected via SPI, a microcontroller with a pin multiplexer that can be perma-
nently locked to the internal CAN controller or the Mercury Bus Guardian.

6. Use an IDS to log suspicious traffic. At a minimum there should be evidence
collected for post-incident analysis.

7. Use a hardware-assisted IDS to prevent attacks. An IDS that can destroy CAN
frames before they are received can guard ECUs from spoofing attacks. Attacks
originating from ECUs with Mercury Bus Guardian can be shut down.

8. Use encryption to protect against re-wiring attacks. For situations where an
attacker is motivated to re-wire a CAN bus then encryption with authentica-
tion should be used to protect critical messages (such as odometer readings).

Copyright © 2019 Canis Automotive Labs Ltd. 38 / 39

8 Change history

Version 7
Added description of wire-cutting spoofing attack and photograph of a device for
spoofing odometer readings (section 2.5).

Updated description of encryption section to note that it protects against re-wiring
attacks (section 5.1).

Updated mitigations comparison table to include the wire-cutting spoofing attack
(section 7.1)

Updated recommendations to include use of cryptographic authentication to pro-
tect messages that could be attacked by re-wiring (section 7.2).

Copyright © 2019 Canis Automotive Labs Ltd. 39 / 39

9 References

1 “Cyber security enhancing CAN transceivers”, Elend, B., Adamson, T., International
CAN Conference 2017, pp. 08-1 to 08-4.

2 “Road Vehicles – Controller Area Network (CAN) – Part 1: Data link layer and physical
signalling”, ISO 11898-1, second edition 2015-12-15, note at end of section 10.7 “Frame
validation”.

3 “Buridan’s Principle”, Lamport, L., Foundations of Physics 42(8), August 2012.

4 “Error Handling of In-Vehicle Networks Makes Them Vulnerable”, Cho, K-T., Shin, K.,
23rd ACM Conference on Computer and Communications Security, Vienna, 2016.

