

CAN-HG overview
Augmenting Classic CAN for

Performance and Security

Dr. Ken Tindell, CTO Canis Automotive Labs
ken.tindell@canislabs.com

Document number 1905
Version 04
Issue date 2020-12-14

Copyright © 2020 Canis Automotive Labs Ltd. 2 / 12

1 Overview

1.1 Motivation

CAN is a successful and widely adopted protocol, offering robust real-time

communications with guaranteed latencies and atomic multicast. But there are

limitations. Many applications today require much more bandwidth than the

maximum 1Mbit/sec that CAN offers, requiring networks to be partitioned into

multiple buses with gateways copying messages between buses. There is no

security in CAN so that a single node contaminated with malware can subvert the

bus.

CAN needs augmenting to bring it up to date:

• It needs to run much faster

• It needs security

The CAN-HG protocol augments existing CAN with Higher speed data and

provides bus Guarding support to stop spoofing and denial-of-service attacks.

Most importantly, CAN-HG interoperates completely with existing CAN systems:

• It operates with the existing CAN physical layer – both the wiring and the

transceivers.

• It is completely compatible with standard CAN frames – it augments

existing CAN frames with additional data at a bit rate of up to 10Mbit/sec.

• Existing CAN controller hardware is not disturbed by CAN frames

augmented with CAN-HG data (the data is simply invisible to controllers).

1.2 CAN-HG augmenting classic CAN

CAN-HG augments classic CAN to meet the challenges described above by adding

fast bits inside of a CAN bit. These data bits are much faster than the bits of the

underlying CAN protocol:

• A CAN bit is typically 2000ns in duration (i.e. 500kbit/s) and there is much

empty time between CAN bit sample points.

• The CAN physical layer can sustain a bit time of 100ns (i.e. 10Mbit/sec) if

special signal processing measures are taken.

 Fast bits can be added to a CAN frame by taking advantage of a feature of the

CAN specification.

Copyright © 2020 Canis Automotive Labs Ltd. 3 / 12

Figure 1: Adding fast bits into a CAN signal

CAN requires that the bus signal be ignored after a bit is sampled as a 0 until the

next sample point. Figure 1 shows an example of placing CAN-HG fast bits across

four CAN bits of 1001. In the top trace, the red area shows where fast bits can be

added: after a sample point where the CAN bit has been sampled as a 0, and before

the next sample point. The bottom trace shows an example of the augmented CAN

signal.

The CAN physical layer introduces bit asymmetry and noise due to reflections

from impedance mismatches and at 10Mbit/sec these effects are significant. CAN-

HG adopts a digital filtering system combined with a dynamic bit decoding

scheme (CAN-HG has been tested on various topologies including 24m long

FLRY-A cables with several unterminated stubs).

The placement of fast bits requires calculations that take account of the physical

layer characteristics, clock accuracy, and so on. CAN-HG avoids the need for these

calculations to be made in setting up a system and instead defines standard profiles

that specify the complete network-wide setup of a CAN-HG system including the

CAN characteristics. A system is configured simply by selecting the profile.

1.3 CAN-HG frames

A CAN-HG frame is a set of fast bits embedded inside a CAN frame. A CAN-HG

frame consists of two parts:

• A CAN-HG header of 32 bits. All CAN frames can be augmented with a

header.

• An optional CAN-HG body of up to 928 bits (for CAN running at

500kbit/sec). A body carries up to 104 bytes of user payload data and to

achieve this the augmented CAN frame needs to be an 8-byte CAN frame

(such a CAN frame is called a ‘carrier frame’).

The CAN header is placed into a CAN frame after the sample point of CAN frame

bit ‘r0’. The header contains:

• An 8-bit physical source address (designed to map directly on to J1939 and

CANOpen addresses)

• A 15-bit CRC1 that is applied over the header bit and the CAN frame ID.

1 The header CRC has a Hamming Distance of 6

Copyright © 2020 Canis Automotive Labs Ltd. 4 / 12

• Calibration bits (that allow the receive to sync with the sending bits).

• Flags (one flag indicates that a body follows the header).

The full CAN-HG frame is shown Figure 2:

Figure 2: Anatomy of a CAN-HG frame embedded inside a classic CAN frame

A CAN-HG body consists of the following fields:

• 32-bit Control field

• 32-bit Timestamp field

• Payload (multiple 32-bit words)

• 32-bit CRC

The number of user payload words is fixed for a given profile: CAN-HG frames

exist only inside CAN frames and the size of the CAN carrier frame is fixed. To

make it easier to write driver software, the Control field contains a 10-bit DLC

value that the software sets to indicate how many bytes within the user payload

are valid (the reason the DLC is 10 bits is that when the CAN bit rate is lower, the

number of CAN-HG payload words that can fit inside a carrier frame goes up, and

CAN-HG payloads of up to 1024 bytes are possible).

The Timestamp field is the time when the falling edge of the CAN SOF bit

happened measured by the sender’s clock. A receiver can compare its own SOF

timestamp with the sender’s to get a measure of global time; this can be used to

synchronize events across a bus (e.g. when sensors are read, or actuators

commanded).

The Payload field contains user data. In Profile 0 (where the CAN baud rate is

500kbit/sec) this is 104 bytes.

The CRC field2 protects the CAN-HG frame, both header and body and includes

the CAN frame ID. It provides a Hamming Distance of 6 (necessary for high-

integrity applications).

2 The CRC comes from CMU’s ‘CRC Polynomial Zoo’

Copyright © 2020 Canis Automotive Labs Ltd. 5 / 12

2 CAN-HG security

2.1 Background

Approaches to CAN security have traditionally taken two forms:

• A security gateway. This patrols what goes between a ‘trusted’ and

‘untrusted’ CAN bus by receiving messages on one side and either

discarding or re-transmitting them on the other side.

• Encryption. A layer is defined above CAN frames and extra information is

added to include a message authentication code that the receiver uses to verify

that the message came from the sender and has not been tampered with.

These have drawbacks. For example, a security gateway does not prevent carefully

crafted messages from exploiting a bug in the firmware of a node on the trusted

side and hijacking it. Encryption requires more bandwidth to transmit messages

and cannot protect against a node being hijacked and used to forge messages with

the keys contained in the node. And neither approach protects the bus from denial-

of-service attacks3.

CAN-HG takes a different approach and operates at a level below the CAN frame

by using fast bits to communicate security information.

2.2 Message integrity

Message integrity means that all receivers should only act on messages that were

created by the legitimate sender. For CAN this means that the frame should come

from the node implied by the ID of the frame. CAN-HG supports message integrity

with hardware: a type of device called a Bus Guardian is added to a node between

the CAN controller RX/TX lines and the CAN transceiver:

Figure 3: A standard CAN microcontroller with a CAN-HG Bus Guardian

3 For a detailed analysis of various CAN security approaches see Canis Automotive Labs

document 1901 “CAN Bus Security: Attacks on CAN and their mitigations”.

Copyright © 2020 Canis Automotive Labs Ltd. 6 / 12

Figure 4 below shows a standard CAN frame, with the ‘CAN RX’ line showing the

digital output of a CAN transceiver and ‘CAN H’ and ‘CAN L’ showing the

voltages on the twisted pair CAN bus. The CAN ID is highlighted in green.

Figure 4: A standard CAN frame (has an 11-bit ID of 0x14 and a 1-byte payload)

The Bus Guardian augments a CAN frame by adding CAN-HG headers to CAN

frames as they are transmitted from the existing CAN controller hardware. The

header contains the source address of the sending node.

Figure 5 shows the output of a logic analyzer protocol decoder for CAN-HG.

Figure 5: Bus Guardian adding a CAN-HG header inside a CAN frame

The top trace is the CAN TX signal from a CAN controller. The second trace is

what is seen on the CAN bus after the Bus Guardian adds fast bits. CAN bits and

CAN fields are shown and then underneath are the CAN-HG fast bits and decoded

CAN-HG fields.

The fast bits appear as ‘glitches’ at this scale (a fast bit here is about twenty times

shorter than a CAN bit). Zooming in to the CAN-HG header area shows the fast

bits in more detail:

Figure 6: A closer look at the CAN-HG header fast bits

Copyright © 2020 Canis Automotive Labs Ltd. 7 / 12

The individual fast bits can be seen and the protocol decoder shows how they are

used to encode flags, a source address and a CRC.

A CAN bus is protected by a central security node that contains CAN-HG

Intrusion Detect System (IDS) hardware (Figure 7 and Figure 8).

Figure 7: The central security node with CAN-HG IDS hardware

Figure 8: An example system of a central security node

protecting a CAN bus of four other nodes

The basic operation of the central IDS is as follows:

• The CAN-HG IDS hardware decodes the CAN-HG header before the rest

of the CAN frame is fully received and passes this to IDS software.

• The IDS software runs (typically in an interrupt handler) and examines the

CAN ID of the partially received frame and the CAN-HG header.

• If the source address in the header does not match the expected source

address of the CAN ID, then the IDS software determines this frame is a

spoof.

• The IDS software destroys the frame by instructing the CAN-HG IDS

hardware to raise an error (i.e. transmit an error flag of 6 dominant bits) to

destroy the CAN frame.

The CAN protocol defines three major stages of frame transmission.

• The first phase is arbitration. Multiple transmitters with a valid frame start

to transmit the CAN ID. A transmitter will drop out of arbitration after

transmitting a recessive bit but reading a dominant bit.

Copyright © 2020 Canis Automotive Labs Ltd. 8 / 12

• The next phase is transmitting the DLC, data and CRC. After arbitration is

finished there is a single transmitter remaining4. and this sends the

remaining bits of the CAN frame.

• The last phase is message acceptance. At the end of the EOF field, receivers

will accept the bit sequence as valid and pass the frame to the application

software.

If an error occurs at any point during transmission, then the CAN protocol stops

receiving the frame and all CAN nodes resynchronize. Forcing an error on to the

bus before the last phase prevents a CAN frame from being received. This part of

the CAN protocol means that no other node on the bus will see the spoof frame

because it is stopped before it gets to the end of the EOF field of the frame.

IDS software that actively protects the bus is called an Intrusion Detection Prevention

System (IDPS). Because CAN bits are relatively long (each bit is 2 microseconds at

0.5Mbit/sec) there are many microseconds of ‘thinking time’ before the end of the

EOF field is reached and by which time the IDS software must have reacted. In

even low-powered microcontrollers the IDS can execute thousands of CPU

instructions in this time.

This IDPS approach provides authentication of the message directly in hardware:

the spoof is detected because of where it comes from, and the address identifying

that is injected by the Bus Guardian hardware at the source node (the Bus

Guardian is not configurable, and the source address is fixed when the node is

manufactured).

The Bus Guardian provides some additional security measures beyond injecting a

CAN-HG header. For example, if the Bus Guardian sees its own source address

being used on the bus then it automatically destroys the frame (since it must be a

spoof). This prevents a device directly attached to the CAN bus from forging a

CAN-HG header.

2.3 Bus availability

Message integrity is a necessary but not sufficient property of a secure system. A

system must also be available: an attack should not be able to stop the normal

operation of the system. For CAN this means that an attack needs to be stopped

from disrupting the bus with a denial-of-service (DoS) attack.

There are lots of ways CAN is vulnerable to a DoS attack, from simply flooding

the bus with high priority messages to carefully timed attacks on the CAN protocol

itself. For example, the well-known Bus-Off Attack can force a node off the bus by

injecting errors into its frames until the error confinement part of the CAN protocol

is triggered and the CAN controller is taken offline. Attacks on the CAN protocol

can take place when malware in the node re-purposes the CAN RX/TX pins of the

4 CAN remote frames are an exception to this rule.

Copyright © 2020 Canis Automotive Labs Ltd. 9 / 12

controller into general purpose I/O (GPIO) pins under software control and ‘bit

bangs’ CAN signals that can be subtly altered to mount an attack5.

CAN-HG has specific support for ensuring bus availability:

• The Bus Guardian checks for CAN protocol attacks from its host and

temporarily ceases passing through the CAN controller’s signal to the CAN

transceiver, preventing further attacks for a time.

• The central IDPS can broadcast a ‘cease’ command on CAN that causes the

Bus Guardian to block the attacking host CAN controller’s signals until

further notice.

The cease command is sent in a CAN frame with the highest priority CAN ID (i.e.

an 11-bit ID of 0). This ensures that the command cannot be blocked by a bus flood

and will be received by a Bus Guardian. The cease command itself has special

protections beyond the CAN-HG message integrity measures: the Bus Guardian

detects an attempt to spoof CAN ID 0 and temporarily takes the host off the bus

for long enough for an IDPS cease command to be sent to confirm a permanent

block.

2.4 Confidentiality

Confidentiality is the third ‘triad’ of security: keeping the contents of

communication secret. In embedded systems this is less important: most

messaging is concerned with non-confidential real-time sensor and actuator data.

Consequently CAN-HG does not have specific support defined for confidentiality.

Instead, a higher layer can use the large CAN-HG payload to contain the extra

information required for encryption (Initialization Vectors, counters, etc.).

Canis Automotive Labs has developed a CAN encryption layer called

‘CryptoCAN’ that uses AES in CFB mode to encrypt the payloads of CAN frames,

with Message Authentication Codes (MACs) using the NIST CMAC algorithm.

This layer can be applied to the payload field of a CAN-HG frame body. There are

currently reserved bits in the CAN-HG Control field and some of these could be

used to describe the encryption scheme in an encrypted payload.

2.5 Security policies

CAN-HG security provides security mechanisms in hardware, such as:

• Providing events with metadata throughout a CAN frame

• Destroying a frame

• Handling IDPS commands

The security policies are implemented in the IDPS software that meets overall

application-specific system requirements.

5 The CANHack toolkit is an open source bit-banging library for CAN; see

https://github.com/kentindell/canhack

Copyright © 2020 Canis Automotive Labs Ltd. 10 / 12

3 Implementation

3.1 CAN-HG engine hardware “hgmac”

The core CAN-HG protocol is implemented in a Verilog hardware IP block called

hgmac. This contains a CAN protocol engine plus the logic to augment an external

CAN signal with CAN-HG data. It synthesises to just under 5000 gates.

Other hardware modules are placed around the core engine to create specific

devices, as discussed below.

3.2 Bus Guardian

The Bus Guardian hardware IP consists of the core CAN-HG engine plus two

further modules:

• A host CAN signal monitor and blocker

• A handler for received IDPS commands

The Bus Guardian can be implemented in a standard-alone device (typically a

small low-cost FPGA) or integrated into a System-on-Chip (SoC) device, or even

integrated directly into a CAN transceiver (the Bus Guardian does not use any

non-volatile memory such as EEPROM or flash and the number of gates is low

enough to fit with large geometry processes).

Canis Automotive Labs has developed a specific FPGA solution called the

Mercury Bus Guardian, a tiny multi-chip module designed to ease early low-

volume adoption of CAN-HG (Figure 9).

Figure 9: The Mercury Bus Guardian multi-chip module

Copyright © 2020 Canis Automotive Labs Ltd. 11 / 12

3.3 IDPS controller

IDPS controller consists of the core CAN-HG engine plus a set of registers and

buffer memory to allow IDPS software running on a host CPU to be driven by

CAN events during a frame being sent on the bus and obtain metadata on the CAN

frame (e.g. the source address in a header). In addition, the IDPS controller permits

the transmission of CAN carrier frames with CAN-HG bodies carrying a full CAN-

HG payload. The trace in Figure 10 shows a CAN carrier frame augmented by

CAN-HG fast bits. The CAN bit rate is 0.5Mbit/sec and the augmented data is at

10Mbit/sec.

Figure 10: An example CAN carrier frame augmented by CAN-HG

The top line shows the CAN TX signal produced internally and the second line

shows the output from the IDPS controller. The fields marked “P” are the 32-bit

payload words and underneath the payload words are shown the individual

payload bytes.

Large CAN-HG payloads inside CAN carrier frames are particularly useful for

specific applications where high-speed transfers are important, such as high-

bandwidth sensors or bulk transfer of data to and from an external connection.

The IDPS controller is accessed via AXI4 bus or SPI slave interfaces. There are three

main deployment options:

• A hardware IP block on a hybrid FPGA with an integrated microcontroller

subsystem and connected to the microcontroller via AXI bus.

• A hardware IP block on an SoC and connected to the rest of the system via

an AXI bus.

• The Mercury IDPS, a standalone small FPGA providing an SPI interface to

the host CPU.

In all cases, the IDPS functionality is carried out with firmware running on the host

CPU that uses the IDPS controller to obtain data and carry out CAN-HG security

instructions.

Copyright © 2020 Canis Automotive Labs Ltd. 12 / 12

3.4 CAN-HG controller

The CAN-HG controller is built around the CAN-HG engine and adds a register

and buffering interface. The controller is designed to be an augmented CAN

controller and contains a receive frame FIFO (with CAN ID filtering masks) and a

transmit frame buffer. Outgoing CAN frames are augmented with CAN-HG

headers and carrier frames can be sent with CAN-HG bodies containing large

payloads.

The CAN-HG controller also contains an IDPS command handler that (like the Bus

Guardian) accepts ‘cease’ commands from an IDPS and will disable the

transmission of the CAN controller.

Three hardware transmit buffers are included to avoid the problem of priority

inversion6 when transmitting frames. These are internally arbitrated by CAN ID

and the winner selected when bus arbitration starts. The interface to the buffers

from the host MCU has been designed to simplify driver software (particularly

AUTOSAR CAN drivers), with the interface to the driver using a novel ‘tag’

mechanism: an 8-bit value is supplied by the driver when writing a CAN frame to

the controller (this tag has meaning to the driver as a frame indicator – it might be

an array index or a pointer offset) and all controller events are communicated back

to the driver using this tag.

There main deployment options are the same as for the IDPS controller:

• A hardware IP block on a hybrid FPGA with an integrated microcontroller

subsystem and connected to the microcontroller via AXI bus.

• A hardware IP block on an SoC and connected to the rest of the system via

an AXI bus.

• The Mercury CAN-HG controller, a standalone small FPGA providing an

SPI interface to the host CPU.

SPI is a relatively slow chip-to-chip protocol for communications data that is as

fast as 10Mbit/sec and alternatives for the Mercury CAN-HG interfacing are being

explored.

6 Priority inversion is a major problem for real-time systems and can lead to urgent messages

being delayed for an arbitrarily long period of time, causing all kinds of timing faults. See

https://kentindell.github.io/2020/06/29/can-priority-inversion/ for a description and

demonstration of priority inversion on CAN.

