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1 Overview 

1.1 Motivation 

CAN is a successful and widely adopted protocol, offering robust real-time 

communications with guaranteed latencies and atomic multicast. But there are 

limitations. Many applications today require much more bandwidth than the 

maximum 1Mbit/sec that CAN offers, requiring networks to be partitioned into 

multiple buses with gateways copying messages between buses. There is no 

security in CAN so that a single node contaminated with malware can subvert the 

bus. 

CAN needs augmenting to bring it up to date:  

• It needs to run much faster 

• It needs security 

The CAN-HG protocol augments existing CAN with Higher speed data and 

provides bus Guarding support to stop spoofing and denial-of-service attacks. 

Most importantly, CAN-HG interoperates completely with existing CAN systems: 

• It operates with the existing CAN physical layer – both the wiring and the 

transceivers. 

• It is completely compatible with standard CAN frames – it augments 

existing CAN frames with additional data at a bit rate of up to 10Mbit/sec. 

• Existing CAN controller hardware is not disturbed by CAN frames 

augmented with CAN-HG data (the data is simply invisible to controllers). 

1.2 CAN-HG augmenting classic CAN 

CAN-HG augments classic CAN to meet the challenges described above by adding 

fast bits inside of a CAN bit. These data bits are much faster than the bits of the 

underlying CAN protocol: 

• A CAN bit is typically 2000ns in duration (i.e. 500kbit/s) and there is much 

empty time between CAN bit sample points. 

• The CAN physical layer can sustain a bit time of 100ns (i.e. 10Mbit/sec) if 

special signal processing measures are taken. 

 Fast bits can be added to a CAN frame by taking advantage of a feature of the 

CAN specification. 
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Figure 1: Adding fast bits into a CAN signal 

CAN requires that the bus signal be ignored after a bit is sampled as a 0 until the 

next sample point. Figure 1 shows an example of placing CAN-HG fast bits across 

four CAN bits of 1001. In the top trace, the red area shows where fast bits can be 

added: after a sample point where the CAN bit has been sampled as a 0, and before 

the next sample point. The bottom trace shows an example of the augmented CAN 

signal. 

The CAN physical layer introduces bit asymmetry and noise due to reflections 

from impedance mismatches and at 10Mbit/sec these effects are significant. CAN-

HG adopts a digital filtering system combined with a dynamic bit decoding 

scheme (CAN-HG has been tested on various topologies including 24m long 

FLRY-A cables with several unterminated stubs). 

The placement of fast bits requires calculations that take account of the physical 

layer characteristics, clock accuracy, and so on. CAN-HG avoids the need for these 

calculations to be made in setting up a system and instead defines standard profiles 

that specify the complete network-wide setup of a CAN-HG system including the 

CAN characteristics. A system is configured simply by selecting the profile. 

1.3 CAN-HG frames 

A CAN-HG frame is a set of fast bits embedded inside a CAN frame. A CAN-HG 

frame consists of two parts: 

• A CAN-HG header of 32 bits. All CAN frames can be augmented with a 

header. 

• An optional CAN-HG body of up to 928 bits (for CAN running at 

500kbit/sec). A body carries up to 104 bytes of user payload data and to 

achieve this the augmented CAN frame needs to be an 8-byte CAN frame 

(such a CAN frame is called a ‘carrier frame’). 

The CAN header is placed into a CAN frame after the sample point of CAN frame 

bit ‘r0’. The header contains: 

• An 8-bit physical source address (designed to map directly on to J1939 and 

CANOpen addresses) 

• A 15-bit CRC1 that is applied over the header bit and the CAN frame ID. 

 

 
1 The header CRC has a Hamming Distance of 6 
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• Calibration bits (that allow the receive to sync with the sending bits). 

• Flags (one flag indicates that a body follows the header). 

The full CAN-HG frame is shown Figure 2: 

 

Figure 2: Anatomy of a CAN-HG frame embedded inside a classic CAN frame 

A CAN-HG body consists of the following fields: 

• 32-bit Control field 

• 32-bit Timestamp field 

• Payload (multiple 32-bit words) 

• 32-bit CRC 

The number of user payload words is fixed for a given profile: CAN-HG frames 

exist only inside CAN frames and the size of the CAN carrier frame is fixed. To 

make it easier to write driver software, the Control field contains a 10-bit DLC 

value that the software sets to indicate how many bytes within the user payload 

are valid (the reason the DLC is 10 bits is that when the CAN bit rate is lower, the 

number of CAN-HG payload words that can fit inside a carrier frame goes up, and 

CAN-HG payloads of up to 1024 bytes are possible). 

The Timestamp field is the time when the falling edge of the CAN SOF bit 

happened measured by the sender’s clock. A receiver can compare its own SOF 

timestamp with the sender’s to get a measure of global time; this can be used to 

synchronize events across a bus (e.g. when sensors are read, or actuators 

commanded). 

The Payload field contains user data. In Profile 0 (where the CAN baud rate is 

500kbit/sec) this is 104 bytes. 

The CRC field2 protects the CAN-HG frame, both header and body and includes 

the CAN frame ID. It provides a Hamming Distance of 6 (necessary for high-

integrity applications). 

 

 
2 The CRC comes from CMU’s ‘CRC Polynomial Zoo’ 
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2 CAN-HG security 

2.1 Background 

Approaches to CAN security have traditionally taken two forms: 

• A security gateway. This patrols what goes between a ‘trusted’ and 

‘untrusted’ CAN bus by receiving messages on one side and either 

discarding or re-transmitting them on the other side. 

• Encryption. A layer is defined above CAN frames and extra information is 

added to include a message authentication code that the receiver uses to verify 

that the message came from the sender and has not been tampered with. 

These have drawbacks. For example, a security gateway does not prevent carefully 

crafted messages from exploiting a bug in the firmware of a node on the trusted 

side and hijacking it. Encryption requires more bandwidth to transmit messages 

and cannot protect against a node being hijacked and used to forge messages with 

the keys contained in the node. And neither approach protects the bus from denial-

of-service attacks3. 

CAN-HG takes a different approach and operates at a level below the CAN frame 

by using fast bits to communicate security information.  

2.2 Message integrity 

Message integrity means that all receivers should only act on messages that were 

created by the legitimate sender. For CAN this means that the frame should come 

from the node implied by the ID of the frame. CAN-HG supports message integrity 

with hardware: a type of device called a Bus Guardian is added to a node between 

the CAN controller RX/TX lines and the CAN transceiver: 

 

Figure 3: A standard CAN microcontroller with a CAN-HG Bus Guardian 

 

 
3 For a detailed analysis of various CAN security approaches see Canis Automotive Labs 

document 1901 “CAN Bus Security: Attacks on CAN and their mitigations”. 
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Figure 4 below shows a standard CAN frame, with the ‘CAN RX’ line showing the 

digital output of a CAN transceiver and ‘CAN H’ and ‘CAN L’ showing the 

voltages on the twisted pair CAN bus. The CAN ID is highlighted in green. 

 

Figure 4: A standard CAN frame (has an 11-bit ID of 0x14 and a 1-byte payload) 

The Bus Guardian augments a CAN frame by adding CAN-HG headers to CAN 

frames as they are transmitted from the existing CAN controller hardware. The 

header contains the source address of the sending node.  

Figure 5 shows the output of a logic analyzer protocol decoder for CAN-HG. 

 

Figure 5: Bus Guardian adding a CAN-HG header inside a CAN frame 

The top trace is the CAN TX signal from a CAN controller. The second trace is 

what is seen on the CAN bus after the Bus Guardian adds fast bits. CAN bits and 

CAN fields are shown and then underneath are the CAN-HG fast bits and decoded 

CAN-HG fields. 

The fast bits appear as ‘glitches’ at this scale (a fast bit here is about twenty times 

shorter than a CAN bit). Zooming in to the CAN-HG header area shows the fast 

bits in more detail: 

 

Figure 6: A closer look at the CAN-HG header fast bits 
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The individual fast bits can be seen and the protocol decoder shows how they are 

used to encode flags, a source address and a CRC. 

A CAN bus is protected by a central security node that contains CAN-HG 

Intrusion Detect System (IDS) hardware (Figure 7 and Figure 8). 

 

Figure 7: The central security node with CAN-HG IDS hardware 

 

Figure 8: An example system of a central security node  

protecting a CAN bus of four other nodes 

The basic operation of the central IDS is as follows: 

• The CAN-HG IDS hardware decodes the CAN-HG header before the rest 

of the CAN frame is fully received and passes this to IDS software. 

• The IDS software runs (typically in an interrupt handler) and examines the 

CAN ID of the partially received frame and the CAN-HG header. 

• If the source address in the header does not match the expected source 

address of the CAN ID, then the IDS software determines this frame is a 

spoof. 

• The IDS software destroys the frame by instructing the CAN-HG IDS 

hardware to raise an error (i.e. transmit an error flag of 6 dominant bits) to 

destroy the CAN frame. 

The CAN protocol defines three major stages of frame transmission. 

• The first phase is arbitration. Multiple transmitters with a valid frame start 

to transmit the CAN ID. A transmitter will drop out of arbitration after 

transmitting a recessive bit but reading a dominant bit. 
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• The next phase is transmitting the DLC, data and CRC. After arbitration is 

finished there is a single transmitter remaining4. and this sends the 

remaining bits of the CAN frame. 

• The last phase is message acceptance. At the end of the EOF field, receivers 

will accept the bit sequence as valid and pass the frame to the application 

software. 

If an error occurs at any point during transmission, then the CAN protocol stops 

receiving the frame and all CAN nodes resynchronize. Forcing an error on to the 

bus before the last phase prevents a CAN frame from being received. This part of 

the CAN protocol means that no other node on the bus will see the spoof frame 

because it is stopped before it gets to the end of the EOF field of the frame. 

IDS software that actively protects the bus is called an Intrusion Detection Prevention 

System (IDPS). Because CAN bits are relatively long (each bit is 2 microseconds at 

0.5Mbit/sec) there are many microseconds of ‘thinking time’ before the end of the 

EOF field is reached and by which time the IDS software must have reacted. In 

even low-powered microcontrollers the IDS can execute thousands of CPU 

instructions in this time. 

This IDPS approach provides authentication of the message directly in hardware: 

the spoof is detected because of where it comes from, and the address identifying 

that is injected by the Bus Guardian hardware at the source node (the Bus 

Guardian is not configurable, and the source address is fixed when the node is 

manufactured). 

The Bus Guardian provides some additional security measures beyond injecting a 

CAN-HG header. For example, if the Bus Guardian sees its own source address 

being used on the bus then it automatically destroys the frame (since it must be a 

spoof). This prevents a device directly attached to the CAN bus from forging a 

CAN-HG header. 

2.3 Bus availability 

Message integrity is a necessary but not sufficient property of a secure system. A 

system must also be available: an attack should not be able to stop the normal 

operation of the system. For CAN this means that an attack needs to be stopped 

from disrupting the bus with a denial-of-service (DoS) attack. 

There are lots of ways CAN is vulnerable to a DoS attack, from simply flooding 

the bus with high priority messages to carefully timed attacks on the CAN protocol 

itself. For example, the well-known Bus-Off Attack can force a node off the bus by 

injecting errors into its frames until the error confinement part of the CAN protocol 

is triggered and the CAN controller is taken offline. Attacks on the CAN protocol 

can take place when malware in the node re-purposes the CAN RX/TX pins of the 

 

 
4 CAN remote frames are an exception to this rule. 
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controller into general purpose I/O (GPIO) pins under software control and ‘bit 

bangs’ CAN signals that can be subtly altered to mount an attack5. 

CAN-HG has specific support for ensuring bus availability: 

• The Bus Guardian checks for CAN protocol attacks from its host and 

temporarily ceases passing through the CAN controller’s signal to the CAN 

transceiver, preventing further attacks for a time. 

• The central IDPS can broadcast a ‘cease’ command on CAN that causes the 

Bus Guardian to block the attacking host CAN controller’s signals until 

further notice. 

The cease command is sent in a CAN frame with the highest priority CAN ID (i.e. 

an 11-bit ID of 0). This ensures that the command cannot be blocked by a bus flood 

and will be received by a Bus Guardian. The cease command itself has special 

protections beyond the CAN-HG message integrity measures: the Bus Guardian 

detects an attempt to spoof CAN ID 0 and temporarily takes the host off the bus 

for long enough for an IDPS cease command to be sent to confirm a permanent 

block.   

2.4 Confidentiality 

Confidentiality is the third ‘triad’ of security: keeping the contents of 

communication secret. In embedded systems this is less important: most 

messaging is concerned with non-confidential real-time sensor and actuator data. 

Consequently CAN-HG does not have specific support defined for confidentiality. 

Instead, a higher layer can use the large CAN-HG payload to contain the extra 

information required for encryption (Initialization Vectors, counters, etc.). 

Canis Automotive Labs has developed a CAN encryption layer called 

‘CryptoCAN’ that uses AES in CFB mode to encrypt the payloads of CAN frames, 

with Message Authentication Codes (MACs) using the NIST CMAC algorithm. 

This layer can be applied to the payload field of a CAN-HG frame body. There are 

currently reserved bits in the CAN-HG Control field and some of these could be 

used to describe the encryption scheme in an encrypted payload. 

2.5 Security policies 

CAN-HG security provides security mechanisms in hardware, such as: 

• Providing events with metadata throughout a CAN frame 

• Destroying a frame 

• Handling IDPS commands 

The security policies are implemented in the IDPS software that meets overall 

application-specific system requirements. 

 

 
5 The CANHack toolkit is an open source bit-banging library for CAN; see 

https://github.com/kentindell/canhack 
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3 Implementation 

3.1 CAN-HG engine hardware “hgmac” 

The core CAN-HG protocol is implemented in a Verilog hardware IP block called 

hgmac. This contains a CAN protocol engine plus the logic to augment an external 

CAN signal with CAN-HG data. It synthesises to just under 5000 gates. 

Other hardware modules are placed around the core engine to create specific 

devices, as discussed below. 

3.2 Bus Guardian 

The Bus Guardian hardware IP consists of the core CAN-HG engine plus two 

further modules: 

• A host CAN signal monitor and blocker 

• A handler for received IDPS commands 

The Bus Guardian can be implemented in a standard-alone device (typically a 

small low-cost FPGA) or integrated into a System-on-Chip (SoC) device, or even 

integrated directly into a CAN transceiver (the Bus Guardian does not use any 

non-volatile memory such as EEPROM or flash and the number of gates is low 

enough to fit with large geometry processes).  

Canis Automotive Labs has developed a specific FPGA solution called the 

Mercury Bus Guardian, a tiny multi-chip module designed to ease early low-

volume adoption of CAN-HG (Figure 9). 

 

Figure 9: The Mercury Bus Guardian multi-chip module 
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3.3 IDPS controller 

IDPS controller consists of the core CAN-HG engine plus a set of registers and 

buffer memory to allow IDPS software running on a host CPU to be driven by 

CAN events during a frame being sent on the bus and obtain metadata on the CAN 

frame (e.g. the source address in a header). In addition, the IDPS controller permits 

the transmission of CAN carrier frames with CAN-HG bodies carrying a full CAN-

HG payload. The trace in Figure 10 shows a CAN carrier frame augmented by 

CAN-HG fast bits. The CAN bit rate is 0.5Mbit/sec and the augmented data is at 

10Mbit/sec. 

 

Figure 10: An example CAN carrier frame augmented by CAN-HG 

The top line shows the CAN TX signal produced internally and the second line 

shows the output from the IDPS controller. The fields marked “P” are the 32-bit 

payload words and underneath the payload words are shown the individual 

payload bytes. 

Large CAN-HG payloads inside CAN carrier frames are particularly useful for 

specific applications where high-speed transfers are important, such as high-

bandwidth sensors or bulk transfer of data to and from an external connection.    

The IDPS controller is accessed via AXI4 bus or SPI slave interfaces. There are three 

main deployment options: 

• A hardware IP block on a hybrid FPGA with an integrated microcontroller 

subsystem and connected to the microcontroller via AXI bus. 

• A hardware IP block on an SoC and connected to the rest of the system via 

an AXI bus. 

• The Mercury IDPS, a standalone small FPGA providing an SPI interface to 

the host CPU. 

In all cases, the IDPS functionality is carried out with firmware running on the host 

CPU that uses the IDPS controller to obtain data and carry out CAN-HG security 

instructions. 
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3.4 CAN-HG controller 

The CAN-HG controller is built around the CAN-HG engine and adds a register 

and buffering interface. The controller is designed to be an augmented CAN 

controller and contains a receive frame FIFO (with CAN ID filtering masks) and a 

transmit frame buffer. Outgoing CAN frames are augmented with CAN-HG 

headers and carrier frames can be sent with CAN-HG bodies containing large 

payloads.  

The CAN-HG controller also contains an IDPS command handler that (like the Bus 

Guardian) accepts ‘cease’ commands from an IDPS and will disable the 

transmission of the CAN controller. 

Three hardware transmit buffers are included to avoid the problem of priority 

inversion6 when transmitting frames. These are internally arbitrated by CAN ID 

and the winner selected when bus arbitration starts. The interface to the buffers 

from the host MCU has been designed to simplify driver software (particularly 

AUTOSAR CAN drivers), with the interface to the driver using a novel ‘tag’ 

mechanism: an 8-bit value is supplied by the driver when writing a CAN frame to 

the controller (this tag has meaning to the driver as a frame indicator – it might be 

an array index or a pointer offset) and all controller events are communicated back 

to the driver using this tag. 

There main deployment options are the same as for the IDPS controller: 

• A hardware IP block on a hybrid FPGA with an integrated microcontroller 

subsystem and connected to the microcontroller via AXI bus. 

• A hardware IP block on an SoC and connected to the rest of the system via 

an AXI bus. 

• The Mercury CAN-HG controller, a standalone small FPGA providing an 

SPI interface to the host CPU. 

SPI is a relatively slow chip-to-chip protocol for communications data that is as 

fast as 10Mbit/sec and alternatives for the Mercury CAN-HG interfacing are being 

explored.  

 

 
6 Priority inversion is a major problem for real-time systems and can lead to urgent messages 

being delayed for an arbitrarily long period of time, causing all kinds of timing faults. See 

https://kentindell.github.io/2020/06/29/can-priority-inversion/ for a description and 

demonstration of priority inversion on CAN. 


